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Ergodic Quantum Computing
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We propose a (theoretical) model for quantum computation where the result can
be read out from the time average of the Hamiltonian dynamics of a 2-dimensional
crystal on a cylinder. The Hamiltonian is a spatially local interaction among
Wigner–Seitz cells containing six qubits. The quantum circuit that is simulated
is specified by the initialization of program qubits. As in Margolus’ Hamiltonian
cellular automaton (implementing classical circuits), a propagating wave in a
clock register controls asynchronously the application of the gates. However, in
our approach all required initializations are basis states. After a while the syn-
chronizing wave is essentially spread around the whole crystal. The circuit is
designed such that the result is available with probability about 1/4 despite of the
completely undefined computation step. This model reduces quantum computing to
preparing basis states for some qubits, waiting, and measuring in the computa-
tional basis. Even though it may be unlikely to find our specific Hamiltonian in
real solids, it is possible that also more natural interactions allow ergodic quantum
computing.

KEY WORDS: Quantum cellular automata; thermodynamics of computation;
Hamiltonian of a quantum computer; solid state quantum computing.

PACS: 03.67.Lx

1. INTRODUCTION

The question which control operations are necessary to achieve univer-
sal quantum computing is essential for quantum computing research.
The standard model of quantum computation requires (1) preparation
of basis states, (2) implementation of single and two-qubit gates, and
(3) single-qubit measurements in the computational basis. Meanwhile there
are many proposals that reduce or modify the set of necessary control
operations (see e.g. Refs. 1–5). Common to all those models is that the
program is encoded in a sequence of control operations.
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Here we consider a model which requires no control operations
during the computation since the computation is carried out by the
autonomous time evolution of a fixed Hamiltonian. The idea to consider
theoretical models of computers which consist of a single Hamiltonian
can already be found in Refs. 6–8, 15. However, these models are not
explicitly designed for implementing quantum algorithms. We start from
Margolus’ approach since it has the attractive property that the Ham-
iltonian is a homogeneous spatially local interaction between cells of a
2-dimensional lattice and is therefore “relatively close” to interactions in
crystals. Margolus’ Hamiltonian implements the dynamics of a classically
universal cellular automaton (CA). In his 2-dimensional model the front
of a spin wave propagates in one direction over the surface and con-
trols the updating of the cells. Even though there is no globally controlled
clocking of the updates his local synchronization ensures that each cell
is not updated until all relevant neighbors are already updated. In the
Margolus scheme the computer is always in a superposition of many com-
putation steps. At the beginning one has to prepare the wave front such
that it mainly propagates in the forward direction. Such a state is not a
computational basis state. We found it intriguing to use only basis states.
Our goal was to reduce the required control operations to the absolute
minimum: input of the initial state, the writing of the program and the
readout of the classical output. The basis states we start with consist of
components propagating forward and components propagating backward.
Our circuit is designed such that even the backward computation leads to
the correct result. When the time average of an appropriate initial state
subjected to the Hamiltonian dynamics is measured one obtains the cor-
rect result with high probability. The state tells us whether the result has
to be rejected. Hence one may consider the procedure as a Las Vegas algo-
rithm. The name ‘Ergodic Quantum Computer’ refers to the fact that the
time average of the dynamics encodes the computation result, a property
which ensures that the readout requires no clock at all. Our analysis of
the time average of the dynamics and how quickly it is approached, i.e., its
mean ergodic behaviour will be based on the mean ergodic theory of ran-
dom walks on a linear chain. We will later show that this analogy to the
linear case is an implication of our specific construction of the Hamilto-
nian.

Our Hamiltonian is a sum of operators which act on 10 qubits in
contrast to the 2-dimensional Margolus cellular automaton which needs
interactions between 8 qubits for universal classical computation. The idea
that the time average of a Hamiltonian may show the solution of a com-
putational problem can already be found in Ref. 9 where the time average
of a single qubit subjected to a 4-local interaction Hamiltonian encodes



Ergodic Quantum Computing 131

the answer of a PSPACE hard problem. But the Hamiltonian has to be
constructed for the specific PSPACE problem. The Hamiltonian is not
homogeneous and is not appropriate for universal computation.

The structure of the paper is as follows. In Sec. 2 we choose a set of
four 2-qubit gates which is universal for quantum computing. In Sec. 3
we construct a 4-qubit gate which includes all these four gates into one
controlled gate. This makes the computer programmable. Then we describe
how the synchronization scheme of Margolus is used: A wave front of a
clock register propagating around the cylinder ensures that the program-
mable gates are applied in correct time order. This propagation is done
by the evolution of an appropriate Hamiltonian. In Sec. 4 we describe the
symmetry of the crystal by the crystallographic concept of Wigner–Seitz
cells. In Sec. 5 we prove that the time average leads to the correct result.
The readout of this result is explicitly described in Sec. 6. In Sec. 7 we
briefly show that ergodic quantum computing can in principle solve all
problems in polynomial space for all problems where usual quantum algo-
rithms need only polynomial space. At first sight, this seems to be in con-
tradiction to the fact that time steps of usual algorithms are translated to
spatial propagation (as in Ref. 1).

2. UNIVERSAL SET OF GATES

We recall(10) that the following types of gates are sufficient for uni-
versal quantum computation. Let (C2)⊗n be the state space of a quantum
register. Then we consider the following two-qubit and single-qubit gates
which are assumed to be available for every pair of qubits or every single
qubit, respectively:

1. The Hadamard gate on a single qubit:

H := 1√
2

(
1 1
1 −1

)
.

2. The controlled-phase gate

�(σ
1/2
z )=|1〉〈1|⊗

(
1 0
0 i

)
+|0〉〈0|⊗1,

where |0〉, |1〉 are the canonical basis states of C
2 and 1 is the

identity.

Note that an exact implementation of the SWAP gate is possible. There-
fore, without losing universality, we allow the application of controlled-
phase gates only on adjacent qubits.
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Fig. 1. Decomposition of arbitrary quantum circuits
into layers of two-qubit gates U00, . . . ,U11 acting on
adjacent pairs.

We assume that gates acting on disjoint sets of qubits can be applied
at the same time step. We call such a time step a layer of the quantum
circuit. The depth of the quantum circuit is the number of time steps.

For reasons that shall be clear later we consider circuits U which have
a special layer structure (see Fig. 1). Each time step consists of several
gates with the following restrictions:

• In even time-steps we allow only two-qubit gates acting on the
qubit pairs (k, k+1) with even k.

• In odd time-steps we have only two-qubits gates on (k, k+1) with
odd k.

In this scheme we distinguish formally among four 2-qubit gates:

U00 :=1⊗1 , U01 :=1⊗H , U10 :=H ⊗1 , U11 :=�(σ 1/2
z ) . (1)

Using these gates, we construct a circuit U with the following proper-
ties: Let f : {0,1}n→{0,1}m be the function we would like to compute. The
unitary U acts on the input, the output register, and some ancilla register
and computes f in the sense

U
(|x〉⊗ |y〉⊗ |0 . . .0〉)=|x〉⊗ |y⊕f (x)〉⊗ |0 . . .0〉 ,

where ⊕ denotes the bitwise XOR. By construction, we have

U2(|x〉⊗ |y〉⊗ |0 . . .0〉)=|x〉⊗ |y〉⊗ |0 . . .0〉 .
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Without loss of generality, we may assume that f (x) �= 0 for all inputs x
by extending f with an additional bit which is always 1.

Note that there are quantum algorithms where f (x) is only computed
probabilistically. We will neglect this fact since it is irrelevant for the prin-
ciples of our construction and would make the discussion unnecessarily
technical.

3. CONSTRUCTING THE CRYSTAL HAMILTONIAN

Usually a quantum circuit is considered as a sequence of gates. How-
ever, the usual way of drawing it (like in Fig. 1) suggests spatial propa-
gation. Now we consider quantum circuits where quantum information is
really spatially propagated and the time-axis is represented by the second
dimension.

Our circuit is wrapped around a cylinder. The cylinder is covered by
c×h squares (“cells”) of equal size. We have h (for “height”) columns and
c (for “circumference”) rows. We need c > 2h for reasons which will be
clear in Sec. 6. The columns correspond to the qubits of the original cir-
cuit and the rows to its time steps (see Fig. 2).

Each cell (j, k) contains a data qubit. They form the data space:

HD := (C2)⊗ch .

In the j th time step we apply all gates of layer j . A gate of the original
circuit acting on the qubit pair (k, k + 1) in level j translates to a gate
acting on data qubits in cells (j, k), (j, k + 1), (j + 1, k), (j + 1, k + 1). It
applies the original two-qubit gate to the qubits in row j and propagates
the information to row j + 1. Furthermore, the vertices between those 4
cells contain two program qubits which specify which one of the two-qubit
gates in Eq. (1) should be applied. Explicitly, there are two qubits between
cell (j, k) and (j +1, k+1) if both k and j are even or both are odd (see
Fig. 2). For each vertex with program qubits we define the gate

V :=W
∑

l,m∈{0,1}×{0,1}
Plm⊗Ulm , (2)

where Plm := |lm〉〈lm| projects onto the state |lm〉 of the two-qubit pro-
gram register at a certain vertex. W is the swap gate which exchanges the
state of the qubit pairs (j, k) and (j + 1, k) and the pairs (j, k+ 1) and
(j +1, k+1).

This makes our system programmable and will be essential for achiev-
ing our goal to construct a universal Hamiltonian which can simulate
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Fig. 2. (Left) Cylindric crystal consisting of c × h cells. A pair of program qubits is
located at the black points. The lines indicate the boundaries of a cell. (Right) The circuit
wrapped around the cylinder. Every time when a two-qubit gate is applied the information
of both qubits is propagated one row upwards. The output region consists only of trivial
gates, i.e. the information is only propagated.

all circuits. We will only write a program on some part of the cylin-
der because we need the other part as output region (see Sec. 6). As we
have already stated, a computation would consist of applying all gates in
row j in the j th step. However, this requirement is unnecessarily strong.
Actually, the only rule is that each gate in row j can only be applied if
both gates in row j − 1 which contribute to its input have been applied.
These synchronization rules can be visualized by building walls with bricks
(see Fig. 3). The synchronization conditions mean intuitively that incorrect
walls are not allowed. In order to make this analogy perfect we introduce
dummy single qubit gates at the boundaries of odd rows.

We would like to construct a Hamiltonian such that its autonomous
time-evolution corresponds to a computation which respects these syn-
chronization rules. Margolus(11) solved this problem by introducing clock
qubits as follows.

Each cell contains a clock qubit. Let HC = (C2)⊗ch be the Hilbert
space of all these clock qubits. Define the operator
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Fig. 3. Correct (upper) and incorrect (lower) walls.
Putting a brick at position k, j corresponds to carrying
out the gate in level j acting on the qubit pair (j, k) and
(j, k+1).

Gj,k :=
a† ⊗ a†

⊗ ⊗
a ⊗ a

,

where the annihilation operators a act on the qubits (j, k) and (j, k+ 1)
and the creation operators a† act on the qubits (j+1, k) and (j+1, k+1).
These operator Gj,k propagate two 1’s in the qubits (j, k) and (j, k+ 1)
one row upwards

0 0
1 1 	→ 1 1

0 0 ,

where the left lower corner of the cell is at position (j, k). All other con-
figurations are mapped onto the zero vector. Now we define the operator

G :=
∑
j,k

Gj,k,

where j =0, . . . , c−1 and

k=
{

0,2, . . . , h−2 for j even,
1,3, . . . , h−3 for j odd. (3)

In contrast to Margolus we do not consider a cyclic system in both axis
but only cyclic in one direction. This is because we think that a crystal
with 2-dimensional torus symmetry seems less realistic.
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Fig. 4. Visualization of the basis states of H̃C

(the space of allowed clock states) as brick walls.

At the boundary we define a family of operators which act on only
two adjacent cells: For each odd j we set

Gj,−1 := 1√
2

a†

⊗
a

, Gj,h−1 := 1√
2

a†

⊗
a

, (4)

where the annihilation operators act on the qubits (j,0) and (j, h−1) and
the creation operators act on the qubits (j+1,0) and (j+1, h−1), respec-
tively. These operators propagate a 1 in the qubits (j,0) and (j, h− 1),
respectively, one row upwards

0
1 	→ 1

0 ,

where the left lower corner of the rectangle is at position (j, k) with j odd
and k=0, h−1. All other configurations are mapped onto the zero vector.
We include these operators in the operator G.

Now we define a G-invariant subspace HC , interpreted as the space
of correct synchronizations. Intuitively, it is spanned by the set of all basis
states corresponding to correct walls. The position of the uppermost brick
in each column is denoted by symbols 1 as in Fig. 4.

Lemma 1 (synchronization space). Let H̃C be the space spanned by
those basis vectors |a〉, where a is a 0–1-matrix of size c×h satisfying the
following conditions:

(1) Each column contains a single 1, the remaining entries are all 0.
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(2) Let jk be the index of the symbol 1 in column k. Then for the
indices of any two adjacent columns k and k+1 we have

|jk − jk+1|≤1 .

(3) If k+ jk is even then

jk ≥ jk+1 .

If k+ jk is odd then

jk ≤ jk+1 .

Then H̃C is G-invariant.

Proof. Let a be any configuration satisfying the above conditions.

(1) Applying Gj,k to |a〉 does not lead to the zero vector iff the
symbol 1 is at position j in the adjacent columns k and k + 1, i. e.,
jk = jk+1 = j . If this is the case, then Gk,j propagates both 1s one position
upward. Therefore, the configuration Gk,j |a〉 still fulfills condition (1).

(2) Assume first that a is a configuration with jk > jk+1 for some k.
Since a satisfies condition (2) we know that jk= jk+1 +1. The only opera-
tors which act on qubit (k, jk) are Gjk,k and Gjk−1,k−1. The Gjk,k opera-
tor vanishes when applied to |a〉 because the symbol 1 is at position jk−1
in column k + 1 and not at position jk which would be required for a
non-trivial action of Gj,k. The operator Gjk−1,k−1 vanishes because the
1 is at position jk in column k and not at position jk − 1 as would be
required for a non-trivial action of Gjk−1,k−1. This situation is shown on
the left in Fig. 5.
The case jk <jk+1 is proved analogously.

(3) Assume that a is a configuration with jk = jk+1 for some pair of
adjacent columns k and k+1. Let k+ jk be even. In this case we have to
show that every action which increases jk+1 also increases jk.
We first consider the case that both k and jk are even. The only operators
that act on the qubit (k+1, jk+1)= (k+1, jk) are Gk,jk and Gk+1,jk−1. The
second operator vanishes because the symbol 1 is not at position position
jk − 1 in the column k+ 1 but at jk. The operator Gk,jk increases jk and
jk+1 as claimed. This situation is shown on the right in Fig. 5.
Analogously, we can prove that this is also true if k and jk are both odd.
The remaining case is that k+ jk is odd. By using analogous arguments
we can show that every action which increases jk also increases jk+1. �
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Fig. 5. Left: the application of the operators
corresponding to the squares annihilate the state.
Right: The application of the operator which
corresponds to the upper square propagates both
symbols 1.

In analogy to Margolus’ and Feynman’s ideas we define the forward time
operator F by

F :=
∑
j,k

Gj,k ⊗Vj,k,

where Vj,k is the gate V in Eq. (2) acting on the qubits (j, k),(j, k+1),(j+
1, k), and (j+1, k+1). For the operators Gj,−1 and Gj,h−1 (j odd) at the
boundary we set Vj,−1 :=1 and Vj,h−1 :=1.

The Hamiltonian is defined as the sum of the forward time operator
and backward time operator

H :=F +F † .

In the sense of Ref. 12 this is a 10-local interaction since each operator
Gj,k acts on 10 qubits at once. Note that one may rewrite the interac-
tions as k-local terms with k<10 by introducing qudits, i.e., particles with
higher dimensional Hilbert spaces. Therefore, the size 10 does not neces-
sarily mean that this interaction is unphysical.

To analyze the dynamical evolution we need the feature that F is a
normal operator on the relevant subspace (analog to Margolus’ results).
However, since we do not work with cyclic boundary conditions the proof
is a little bit more technical. As noted in Ref. 13 the dynamics of the
1-dimensional cyclic Margolus Hamiltonian(11) is the quasi-free time evo-
lution of independent fermions.

Even though we do not see if the clock dynamics of our Hamiltonian
is also quasi-free, we can prove.

Lemma 2 The restriction of F to the relevant space

H := H̃C ⊗HD ⊗HP

is normal, i.e., FF † =F †F .
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Proof. For an initial state |ψ〉 ∈H the operator FF †|ψ〉 is a sum of
terms of the form

Fj,kF
†
j̃ ,k̃

|ψ〉 . (5)

F †F |ψ〉 is a sum of terms of the form:

F
†
j̃ ,k̃
Fj,k|ψ〉 . (6)

For |k− k̃| ≥ 2 or |j − j̃ | ≥ 2 the operators F †
j̃ ,k̃

and Fj,k act on disjoint
qubits and thus commute. Then the products in Eqs. (5) and (6) are equal.

If |k− k̃|≤1 and |j − j̃ |≤1 then it is easily checked that the product
G

†
j̃ ,k̃
Gj,k|a〉 is only non-zero for (j, k)= (j̃ , k̃).
Therefore, it is sufficient to show that∑

(j,k)

Fj,kF
†
j,k|ψ〉=

∑
(j,k)

F
†
j,kFj,k|ψ〉 (7)

in order to prove that F is normal. Since the operators Uj,k are unitary it
is sufficient to show that∑

(j,k)

Gj,kG
†
j,k|a〉=

∑
(j,k)

G
†
j,kGj,k|a〉 (8)

for every allowed clock configuration a. Note that |a〉 is an eigenvector
of the operators on both sides since each term which does not vanish is
identical to a multiple of the vector |a〉. First we consider only the oper-
ators Gj,k which act on four clock qubits and not the special operators
Gj,−1 and Gj,h−1 at the boundaries. In the cyclic model of Margolus, the
right-hand term in (8) counts the possibilities to go forward and the left-
hand term the possibilities to go backward. The fact that both numbers
coincide proves normality. In the non-cyclic case the possibilities to add
or remove half bricks have to be considered separately.

Note that Gj,k|a〉 can only be non-zero if j = jk (with jk defined as
in Lemma 1), i.e., there is the symbol 1 in position j in the kth column.
Then the term Gjk,k|a〉 does not vanish if and only if there is also a sym-
bol 1 in position (jk, k+1).

To formalize these conditions we introduce the variable ck := (jk + k)
(mod 2) indicating whether jk+k is even or odd. Due to the definition of
the operators Gj,k the term Gjk,k|a〉 is only non-zero if ck = 0. The posi-
tion of the second symbol 1 requires ck+1 = 1. Since jk+1 can differ from
jk by at most 1 the conditions

ck =0 and ck+1 =1
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are also sufficient that Gjk,k|a〉 is non-zero.
Similarly, we have Gjk,kG

†
jk,k

|a〉= |a〉 whenever

ck =1 and ck+1 =0 .

Let n10 and n01 be the number of occurrences of the patterns 10 and 01
in the string (c0, . . . , ch−1), respectively. If n10 =n01 then the leftmost and
the rightmost symbols coincide. In both cases exactly one of the boundary
terms

G
†
j0,−1Gj0,−1|a〉 , G

†
jh−1,h−1Gjh−1,h−1|a〉

does not vanish and yields the vector (1/2)|a〉. The same is true for
the terms with the conjugated boundary operators. Hence both sides of
Eq. (8) yield the same vector (n+1/2)|a〉.

Note that n10 and n01 can differ by at most one. This is the case if
and only if the leftmost and the rightmost symbol are different. If n10 =
n01 + 1 the leftmost and the rightmost symbols are 1 and 0, respectively.
If n01 = n10 + 1 they are 0 and 1, respectively. In the first case only the
combinations

G
†
j0,−1Gj0,−1|a〉 , G

†
jh−1,h−1Gjh−1,h−1|a〉

lead to non-zero terms and contribute to the right-hand side of Eq. (8)
with (1/2)|a〉 each. The conjugated boundary operators lead both to van-
ishing terms. This fact compensates the difference of 1 = n10 − n01 in the
contribution to the left-hand and the right-hand side of Eq. (8). The sec-
ond case (n01 =n10 +1) is treated analogously.

The fact that F is normal helps to understand the dynamical evolu-
tion according to F +F †. In Ref. 11 this fact makes it possible to find a
conserved quantity interpreted as the computation speed. It is given by the
operator V := (F −F †)/i. Then Feynman and Margolus start with initial
states which have a positive expectation value of the computation speed.
Their initial states are necessarily superpositions of basis states because the
expectation value of V is zero for every basis state of the clock. Since |ψ〉
is orthogonal to F |ψ〉 and F †|ψ〉 we have 〈ψ |F −F †|ψ〉 = 0 with |ψ〉 :=
|a〉 ⊗ |φ〉, where |φ〉 ∈ HP ⊗ HD and a is an allowed clock configuration.
In our approach, all initial states are basis states. Despite these differences,
normality of F will be essential in Sec. 5 for the “ergodic theory” of our
Hamiltonian.
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Fig. 6. The black square is a Wigner–Seitz cell con-
taining six qubits. The program bits are black, the clock
qubits are white and the data qubits gray. The dashed
grid indicates the original cells.

4. SYMMETRY OF THE CRYSTAL

The symmetry of a crystal can be described by a unit cell such that
the whole lattice consists of shifted unit cells where the translations are
integer multiples of the lattice vectors. A usual way to choose unit cells
is given by the so-called Wigner–Seitz cell.(14) It is constructed as follows.
Consider an arbitrary point Q in the lattice and consider the set of all
points Q′ which are equivalent to Q in the sense that the translation QQ′
is a symmetry operation. Consider the perpendicular bisector of the side
QQ′. It divides R

2 into two half-planes containing Q and Q′, respectively.
Then the Wigner–Seitz (WS) cell is the intersection of all half planes con-
taining Q. Here we choose the position of one pair of program qubits (i.e.,
a thick grey point in Fig. 2) as Q. In the sequel we will refer to our orig-
inal cells simply as cells in contrast to the WS cell. A WS cell is a square
which has double area compared to the original cells and is rotated by
45◦. It covers four adjacent cells such that it contains half of the area of
each. This is depicted in Fig. 6.

We locate the data and clock spins of each cell such that the WS
cell (which is centered around two program qubits) contains two clock
qubits and two data qubits. Hence, the WS cell contains six qubits. Each
WS cell interacts with those adjacent WS cell which have an edge in
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common. Note, however, that the interaction among the WS cells are not
pair-interactions between adjacent WS cells because it contains operators
which act on five WS cells at once (observe that the operators Fj,k involve
four cells).

Note that the crystal is symmetric under reflections at columns. Due
to the symmetry of the controlled �(σ 1/2

z )-gate. The crystal, as we defined
it, is not symmetric under reflections at rows.

5. MIXING PROPERTIES OF THE TIME EVOLUTION

Our crystal Hamiltonian H =F +F † is (on the relevant subspace) two
times the real part of the normal operator F . Therefore, F and H have a
common spectral decomposition. The following property of F is essential.

Let |ψ〉 := |a〉 ⊗ |φ〉 ∈ H be an initial state of clock, program, and
data register, where a∈{0,1}ch is an allowed clock configuration. Let g :=
(h+1)c/2 be the number of bricks (where half bricks are counted like full
bricks) needed to cover the whole cylindric surface. Then we have

Fj |ψ〉⊥Fk|ψ〉 (9)

for all j �= k mod g. This is easily checked because each state Fj |ψ〉 is a
superposition of states where “the wall” is enlarged by j bricks. In order
to get the same clock configuration one needs to add a multiple of g
bricks. Note that the quantum circuit U (which is encoded in the program
register) can be constructed in such a way that the orthogonality rela-
tion (9) holds even for all j �= k mod 2g. Consider, for instance, the case
j = k+g. Project both states in (9) onto the subspace of H induced by a
definite clock configuration a. On this subspace, the states of the data reg-
ister differ by some unitary. This unitary U ′ is given by the concatenation
of all those gates which have to be applied in order to go from the clock
state a to a again by winding around the cylinder once. In other words, U ′
is obtained by splitting the circuit U and reversing the order of both parts
as follows: Let U1 be given by the sequence of gates which are applied
when the clock wave moves from its initial position to a. Analogously, U2
is given by all gates that are applied when the clock wave moves from a

to the initial position. Then U ′ is given by U ′ :=U1U2 and U =U2U1.
If at least one bit of the computed value f (x) is 1 the application

of U leads always to orthogonal states in the data register.1 Hence the
orthogonality relation (9) is already satisfied for j = g and k = 0. This

1If the output part is correctly initialized.
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corresponds to the trivial splitting U1 =U and U2 = 1. Unfortunately, the
bit flip which occurs on one of the output bits cannot be implemented by
one gate since classical gates are not available in our setting. Therefore the
other splittings may divide the flip operation into non-classical operations.
In order to guarantee that also the other splittings lead to orthogonal data
states we may construct U in such way that it flips two bits, one at the
beginning and one at the end. Then either U1 or U2 contain one complete
bit flip.

The following lemma is important for analyzing the ergodic behavior
since it shows that F is essentially a copy of the shift operator acting on
mutually orthogonal spaces:

Lemma 3 Let B be a normal operator on a finite-dimensional Hilbert
space H and |�〉∈H such that

Bj |ψ〉⊥Bk|ψ〉, j �=k mod N

for some N ∈N. Define

Hl := spanj∈N0
{Bl+jN |ψ〉} ,

where l = 0, . . . ,N − 1 and Ĥ := ⊕N−1
l=0 Hl . Then only the following two

cases can occur:

1. All Hl have the same dimension r. Then we may identify Ĥ with
C
N ⊗C

r such that Hl corresponds to |l〉⊗C
r and B (restricted to Ĥ) has

the form:

B=S⊗A+S† ⊗A† ,

where S is the cyclic shift on C
N and A is some normal matrix of size

r× r.
2. All Hl except for H0 have the same dimension r and H0 has

dimension r + 1. Then we may identify Ĥ with C ⊕ (CN ⊗ C
r ) such that

H0 corresponds to C ⊕ (|0〉⊗ C
r ) and Hl to |l〉⊗ C

r for l= 1, . . . ,N − 1.
Furthermore, this identification can be chosen such that the restriction of
B to Ĥ has the form:

B=0⊕ (S⊗A+S† ⊗A†) .
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Proof. Obviously B has the form:




0 AN−1
A0 0

A1 0
. . .

. . .

AN−2 0


 ,

where each Al maps from Hl to Hl+1 mod N . The diagonal entries of B†B

are

A
†
0A0 ,A

†
1A1 , . . . ,A

†
N−1AN−1 .

The diagonal entries of BB† are

AN−1A
†
N−1 ,A0A

†
0 , . . . ,AN−2A

†
N−2 .

Since B is normal we conclude

A
†
(j+1) mod N

A(j+1) mod N =AjA†
j . (10)

Note that AjA
†
j and A

†
jAj have the same rank, namely rank(Aj ) =

rank(A
†
j ). This shows that all Aj have the same rank r. By definition we

have Hj+1 =AjHj for j = 0, . . . ,N − 2. Therefore, the dimension of Hj

for j =1, . . . ,N −1 is r. Only the dimension of H0 is not yet determined.
Note that the dimension of H0 cannot be smaller than the dimension of
H1 (since the latter is the image of H0).

If B has only trivial kernel in Ĥ then A0 has also trivial kernel. Then
the dimension of H0 is also r. This corresponds to the first case.

The following arguments show that we can find a transformation
which changes every Aj to the same matrix A.

Let B=|B|U be the polar decomposition of B. Here U is unitary and
|B| :=

√
BB†. Observe that U and |B| commute since B is normal. Fur-

thermore, |B| has full rank and leaves each Hl invariant.
We have UHl = H(l+1) mod N . Therefore, the power UN leaves each

subspace Hl invariant. Let X := N
√
UN in the sense that X is a function of

UN and not an arbitrary operator V with V N =UN . It also leaves each Hl

invariant. Define A as the restriction of |B|X to H0. We identify the sub-
spaces Hl with H(l+1) mod N with each other via the unitary transforma-
tion X−1U . Note that X commutes with U . Therefore, this identification
is consistent due to (X−1U)N =X−NUN = 1. By applying the transforma-
tion (X−1U)−1 l times we transport the vector |ψ〉 to the subspace H0
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and obtain (XU−1)l |ψ〉. By applying A to this vector and transporting it
back from H0 to Hl+1 we obtain:

(X−1U)l+1A(XU−1)l |ψ〉 = (X−1U)l+1|B|X(XU−1)l |ψ〉
= |B|XX−1U |ψ〉
= |B|U |ψ〉
= B|ψ〉 .

This shows that our identification of subspaces allows to describe B by
the action of the same operator A for each pair Hl and H(l+1) mod N . By
choosing an arbitrary basis for H0 we may identify all spaces with C

r .
This concludes the proof of the first case.

If B has a non-trivial kernel in Ĥ it is easy to see that its dimension
is 1. This is due to the fact that the vectors Bl+jN |ψ〉 are in the image of
B for all j ≥ 1 and are orthogonal to its kernel. Then we may restrict B
to the orthogonal complement of its kernel and obtain the first case.

With the isomorphism of Lemma 3 we find statements about the
time-average.

Lemma 4 We adopt all notations of Lemma 3. For |ψ〉 ∈ H0 define
the time-average |ψ〉〈ψ |T by

|ψ〉〈ψ |T := 1
T

∫ T

t=0
e−i(B+B†)t |ψ〉〈ψ |ei(B+B†)t dt .

Let W be the probability measure on 0, . . . ,N −1 defined by

W(l) := tr((|l〉〈l|⊗1) |ψ〉〈ψ |T
)
.

Let A= ∑
j ajQj be the spectral decomposition of A. Assume that |ψ〉

lives in the subspace of eigenvalues of A with large modulus, i.e., |ψ〉 ∈∑
j (1⊗Qj)H0 where j runs over all indices with |aj |≥ ε. For

T ≥ 16N
�2 δε

ln
2N
�

with � := sin((δ/7)2) the total variation distance between W and the uni-
form distribution is at most δ, i.e.,

1
2

∑
l

∣∣∣∣W(l)− 1
N

∣∣∣∣≤ δ .
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Proof. We have |ψ〉= |0〉⊗ |κ〉 with |κ〉∈C
r . Hence we have

W(l)= tr((|l〉〈l|⊗1) (|0〉〈0|⊗ |κ〉〈κ|)T
)
,

where the time average is computed according to the Hamiltonian B +
B† =S⊗A+S† ⊗A†.

The projections 1 ⊗Qj commute clearly with |l〉〈l| ⊗ 1 and with the
Hamiltonian. Hence we can equivalently consider the time average of the
mixture

∑
j

(1⊗Qj)|0〉〈0|⊗ |κ〉〈κ|(1⊗Qj) .

This is also true if we use 1-dimensional projections Qj instead of the
original ones. On the image of each 1 ⊗Qj the time average problem
reduces to the following 1-dimensional continuous quantum random walk
according to the Hamiltonian

H̃j =ajS+ajS† .

where S is the cyclic shift on C
N . Calculations on the explicit dynamics

can be found in Ref. 16 (for aj = 1), we are only interested in time aver-
ages. We modify the techniques from Ref. 17 for studying discrete quan-
tum walks to the continuous case.

Let us now consider a fixed index j which is dropped in the sequel.
Then we compute the probability distribution on 0, . . . ,N − 1 induced by
the time average of the state (|0〉〈0|)T according the Hamiltonian H̃ :=
aS+ aS†. Let a= reiφ be the polar decomposition of a. Then the eigen-
values of H̃ are 2r cos(αk), where αk := φ + 2πk/N for k = 0, . . . ,N − 1.
Note that N is even. For simplicity we consider first the case r=1/2 and
derive an upper bound on the mixing time for this case. By rescaling the
time we get a general bound.

Now we consider the system with respect to the Fourier basis. Then
we denote the eigenvectors of S with eigenvalue ωk := e2πik/N by |k〉. The
Fourier transform of the original basis states shall now be denoted by |el〉.
The initial state |e0〉 is an equally weighted superposition of all |k〉, i.e., the
density matrix

γ := 1
N

N−1∑
k,k′=0

|k〉〈k′| .

We call eigenvalues and their eigenvectors good if | sin αk| ≥� with �=
sin((δ/7)2) and denote the number of good eigenvalues by N ′. The length
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of the intervals for which | sin(α)| ≥� for α ∈ [0,2π) is 4 arcsin�/(2π).
Therefore, we have the following bound for large N :

N −N ′

N
≤ 6 arcsin�

2π
≤ 6(δ/7)2

2π
≤

(
δ

7

)2

. (11)

Instead of the superposition of all eigenvectors we consider in the follow-
ing an initial vector which is an equally weighted superposition of only
“good” eigenvectors:

|e0〉≈ |β〉 := 1√
N ′

∑
good k

|k〉 .

The trace norm distance between the modified density matrix and the true
initial state is at most

N −N ′

N
+2

√
N −N ′

N
≤3

√
N −N ′

N
,

where the second term in the sum stems from dropping the bad eigen-
values and the first from rescaling the remaining part. Using Eq. (11) it
is smaller than

3δ
7

≤ δ

2
.

The time average of the modified state is

ρT := 1
T

∫ T

0
e−iH̃ t |β〉〈β|eiH̃ t dt= 1

N ′T
∑
k,k′

∫ T

0
ei(αk′−αk)t dt |k〉〈k′| . (12)

The distance between two adjacent values αk is 2π/N . The derivative of
the cosine is at least � or at most −� for good eigenvalues. Therefore,
for a given k there is at most one k′ such that | cos(αk)−cos(αk′)|<�π/N ,
one in the interval where the cosine has negative derivative and one in the
other interval with positive derivative. If we had three values αk,αk′ , αk′′
such that the distance between cos αk and cos αk′ and between cos αk′ and
cos αk′′ is less than �π/N then we would have | cos αk−cos αk′′ |<�2π/N .
Then we have at least two vales αk in the same interval which cannot be
this close to each other due to the assumption on the derivative.

Define projections Qp for every equivalence class p, i.e., Qp projects
onto the span of all |k〉 with k ∈ p. Note that these spaces are either
1-dimensional or 2-dimensional. We want to show that the probability
distribution

P(l) :=〈el |ρT |el〉 (13)
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is almost the uniform distribution on the N points l = 0, . . . ,N − 1. We
start by showing that the modified distribution

R(l) :=〈el |
∑
p

QpρTQp|el〉 (14)

is almost uniform. Explicitly, we have

R(l)= 1
N ′N

∑
k,k′
(1+ (f (k, k′)ω(k−k

′)l), (15)

where

f (k, k′) :=
{

1
T

∫ T
0 ei(cos αk′−cos αk)t dt for k and k′ equivalent,

0 otherwise,

and the sum runs over all ordered pairs (k, k′) of good indices.
We measure the distance between the probability distributions P and

R by the total variation distance

‖P −R‖ := 1
2

∑
l

|P(l)−R(l)| .

The Diaconis–Shahshahani bound (18) estimates the total variation distance
from R to the uniform distribution U by a sum over the Fourier coeffi-
cients of R:

‖R−U‖≤ 1
4

∑
m�=0

|R̂(m)|2.

Note that the first term of Eq. (15) has only a contribution to R̂(0). Hence
we have only to consider the second term. We obtain

|R̂(m)|≤ | 1
N ′N

N−1∑
l=0

∑
k,k′

ω−lmf (k, k′)ωl(k−k
′)|≤

∑
|f (k, k′)| ,

where the last sum runs over k, k′ such that k− k′ =m mod N . There is
at most one equivalent pair k, k′ satisfying this condition. The reason is
that one index k is in the region with negative derivative of the cosine
and one index k′ in the positive region. Let l, l′ be another equivalent pair
where l is in the negative region. Since l and k are in the same region we
may assume without loss of generality l= k+ d with d <N/2. If l− l′ =
k − k′ mod N we must have l′ = l + d mod N . Then cos αl ≤ cos αk −
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d�2π/N and cos αl′ ≥cos αk′ −d�2π/N . Hence l and l′ cannot be equiv-
alent. Therefore, we find

∑
m�=0

|R̂(m)|2 = 1
N ′N

∑
(k,k′)

|f (k, k′)|2 ≤ 1
N
.

The last inequality is due the fact that there are at most N ′ ordered equiv-
alent pairs (of good eigenvalues). This proves ‖R − U‖ ≤ 1/N which is
clearly smaller than δ/4 for sufficiently large N .

Now we consider the total variation distance between P and R. Using
the explicit representation (12) of ρT and the definitions of P(l) and R(l)
in Eqs. (13) and (14) we have

‖P −R‖= 1
2N ′T

∑
l

∑
k,k′

|〈el |k〉| |〈k′|el〉|
∣∣∣∣
∫ T

0
ei(cos αk−cos αk′ )t dt

∣∣∣∣ ,

where the sum runs over all good inequivalent ordered pairs (k, k′). Note
that we have |〈el |k〉|=1/

√
N . Due to∣∣∣∣ 1
T

∫ T

0
eixt dt

∣∣∣∣≤ 2
T |x|

we have

‖P −R‖≤ 1
N ′T

∑
k,k′

1
| cos αk − cos αk′ |

.

For fixed value k we divide the inequivalent values cos(αk′) in classes m=
1, . . . , �2N/�� such that

�m

N
≤| cos(αk)− cos(αk′)|< �(m+1)

N
. (16)

The cosine function is on the interval [0,2π) two to one and its derivative
has at least modulus � for the good eigenvalues. Therefore, we have for a
fixed k for every m at most two k′ such that

cos αk′ ∈
[

cos αk + �m

N
, cos αk + �(m+1)

N

]

for 2N/�≥m≥−2N/�. Hence the inequality (16) is at most for four val-
ues fulfilled. Therefore, have

‖P −R‖ ≤ 4N ′

�N ′T

2N/�∑
m=1

1
m

≤ 4
�T

(
2N
�

)
ln

(
2N
�

)
.
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In order to have this term less than δ/4 one has to wait the time

32N
�2 δ

ln
2N
�
.

Rescaling the dynamics with the modulus 2rj of the eigenvalues of A the
time is increased by the factor 1/min{2rj } = 1/(2ε). Then we obtain the
time T as stated above.

Putting everything together we obtain

‖W −U‖≤ δ

2
+‖P −R‖+‖R−U‖≤ δ ,

where δ/2 stems from the restriction to good eigenvectors.

For the initial state vector of our computation we have the problem
that we do not know a priori whether a large component lies in the ker-
nel of F . This is important since this component remains stationary under
the evolution. For the part in the image we would like to know whether a
large component lies in the subspace of small eigenvalues. This component
would require a long mixing time. To address both problems we need the
following two lemmas.

Lemma 5 Let B be a normal operator on a Hilbert space and |ψ〉 an
arbitrary unit vector. Let α be the angle between |ψ〉 and B|ψ〉. Let P be
the projection onto the image of B. Then

tr(P |ψ〉〈ψ |P)≥ cos2 α .

Proof. The projection of |ψ〉 onto the image of B has at least the
length of the projection of |ψ〉 onto the span of B|ψ〉 since the latter is
a subspace of the image. Hence the projection onto the image has at least
the length cos α.

In order to estimate the mixing time we need the following.

Lemma 6 Let L := ‖B|ψ〉‖ be the length of B|ψ〉 and 0<δ <L. Let
Pδ be the projection onto all eigenspaces of F with eigenvalues of modu-
lus at least δ. Then we have

tr(Pδ|ψ〉〈ψ |Pδ)≥ cos2(α−arcsin(δ/L))

with α as in Lemma 5.
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Fig. 7. Initial configuration where the component in the
kernel of F can be estimated. The dashed brick indicates
the only possibility to add a brick.

Proof. Define the operator Bδ := PδB. Due to ‖Bδ − B‖ ≤ δ the tip
of the vector Bδ|ψ〉 is in an δ-sphere around the tip of B|ψ〉. By elemen-
tary geometry, the angle between Bδ|ψ〉 and |ψ〉 is at least α−arcsin(δ/L).
Since Pδ is the projection onto the image of Bδ we obtain the statement
using Lemma 5.

To use the lemmas above we could use the initial state a∈{0,1}ch of
the clock which is indicated by the wall in Fig. 7. The only possibility
to add a brick is at the rightmost position (cell 1, h− 1). Hence F |a〉 =
(1/

√
2)|a′〉 where a′ is the new wall with the additional half brick. To cal-

culate F †|a′〉 note that a′ allows only two ways to remove a brick, namely
that one just added (then a′ is mapped to a again) and the upper most
brick on the left (a′ 	→a′′). This means that

F †F |a〉= 1
2
(|a〉⊕ |a′′〉) .

Hence the angle between F †F |a〉 and |a〉 is π/4. The length of F †F |a〉 is
L=1/

√
2.
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Using Lemma 5 we obtain

tr(P |a〉〈a|P)≥ cos2(π/4)=1/2

and by Lemma 6 we have

tr(Pδ|a〉〈a|Pδ)≥ cos2(π/4−arcsin(
√

2δ)) .

Note that eigenvalues of F †F of modulus δ correspond to eigenvalues of
F with modulus

√
δ. If P̃ε is the spectral projection of F for eigenvalues

of at least modulus ε we have

tr(P̃ε |a〉〈a|P̃ε)≥ cos2(π/4−arcsin(
√

2ε2)) .

We will use the lemmas in this section to estimate the probability of
success of the ergodic quantum algorithm. The idea is as follows. In Sec. 6
we will argue that the correct result can be found for all states Fj |ψ〉
(where |ψ〉 is the initial state) for all j satisfying a certain condition. This
condition ensures that the circuit U has been applied an odd number of
times on the data qubits. To formalize this we introduce spaces Hl as in
Lemma 3 which are spanned by the vectors F l+jN |ψ〉. Let Ql be the pro-
jection onto Hl . Then for the probability distribution induced by the time
average

W(l)= 1
T

∫ T

0
tr(Qle

i−Ht |ψ〉〈ψ |eiHt ) dt

we have a lower bound on each W(l).

Lemma 7 There is an initial state of the clock configuration such that
the probability W(l) to find the state in Hl after one has waited the time
T as in Lemma 4 is at least

W(l)≥
(

1
N

−2δ
)

cos2(π/4−arcsin(
√

2ε2)) .

The proof follows immediately from the lemmas of this Section: We
choose the initial clock configuration of Fig. 7. Above we have argued that
the probability for finding a state in the eigenspace with eigenvalues of
modulus at least ε is given by the cos2-expression on the right. Given a
state in this subspace we have uniform distribution up to a variation dis-
tance δ. This yields the factor 1/N −2δ.

In the next section we show for which part of the spaces Hl we have
certainly a correct result and how this promise is used in the readout
procedure.
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6. INITIALIZATION AND READOUT

It is clear that the program qubits have to be initialized according to
the simulated quantum circuit. Furthermore we have to initialize all clock
qubits. On the data register we have only to initialize those qubits which
are located in the cells where the initial clock wave is located.

The readout of the computation result is done as follows. Here we
assume that the initial state of the clock register is |a〉 where all symbols 1
are in row 0 (In Sec. 5 we have also considered another initial configura-
tion which makes is easier to decide which component of the initial state
is in the kernel of the Hamiltonian. However, the analysis of this Section
is technically more complicated and the output region would have to be
enlarged for this initial configuration). We define an output region which
consists of all cells with column index between 1 and m where m is any
natural number greater than 2h.

We choose an arbitrary row in the output region and measure as many
clock qubits of this row as are necessary to find the wave front. If we have
found a clock qubit in state |1〉 in position j, k the wave front in row j +1
and j − 1 has to be in one of the columns k− 1, k, or k+ 1. By this pro-
cedure we can localize the whole wave front. If it is completely localized in
the output region we know that the state of the corresponding logical qubits
is either of the states U(|x〉⊗ |0 . . .0〉) or |x〉⊗ |0 . . .0〉. Then we can read-
out the result. We may define f in such a way that we can decide whether
the result is correct or not. In the following we will give a lower bound
on the success probability of the whole readout procedure. First we esti-
mate the probability for finding the wave front in the output region.

The wave front starts in row 0. States in Hl are in general superpo-
sitions of different wave fronts. Note that every such wave front consists
of l mod g bricks. By elementary geometric arguments one can check the
following statements: First we consider the case that l is in the interval
0, . . . , g − 1. A wave front which consists of more than h2/2 bricks has
completely passed row 0. Similarly, all row indices of the symbols 1 can
be guaranteed to be at most m if l is at most h(m− h)/2. Therefore, we
have at least h(m− h)/2 − h2/2 = h(m− 2h)/2 spaces Hl which are com-
pletely in the output region. We obtain the same number of spaces Hl for
l = g, . . . ,2g − 1. By these arguments we can easily derive the following
lower bound. For each space Hl we can guarantee at least the probabil-
ity 1/N −2δ. This yields the following bound.

Lemma 8 (probability to find the wave front). The probability for
finding the wavefront completely in the output region is at least
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h(m−2h)
(

1
N

−2δ
)
sε ,

where sε is the size of the component of the initial state in the eigenspace
of F with eigenvalues of modulus at least ε.

However, only the values above in the second interval ensure correct
output. Since the function f is without loss of generality 1 on at least one
bit, we can distinguish whether the result has to be rejected and the experi-
ment has to be repeated. The probability that the first experiment succeeds
can hence be estimated by dividing the lower bound of Lemma 8 by two.

Theorem 1 (one shot success probability). The probability for find-
ing the output region and furthermore obtaining the correct computation
result is at least

h(m−2h)
2

(
1
N

−2δ
)
sε

with sε as in Lemma 8.

Note that we have chosen the initial state of Fig. 7 because we were
able to prove a lower bound on the length of the component in the image
of F which yields a good value for sε . Actually, the disadvantage of this
initial state is that the propagation is slow since the wall can grow only
at one point. The more natural initial configuration given by a flat wall
allows propagation in every second column. For this wall, we do not have
a good estimation for the component in the image of F which is as simple
as for the wall in Fig. 7. Nevertheless, we believe that it is better to start
with the flat wave. If the size of the output region dominates the size of
the circuit (i.e. c≈m and c�h) the quotient h(m−2h)/N tends to 1 since
N = c(h+ 1). With small ε the factor in Theorem 1 is almost 1/2. Hence
the success probability tends to 1/4.

7. SOLVING PSPACE PROBLEMS IN CRYSTALS OF
POLYNOMIAL SIZE

It seems to be a general property of our construction that the size
of the crystal necessarily grows linearly with the running time (i.e., the
depth) of the encoded circuit. From the complexity theoretic point of
view, this would have important consequences. Note that the complexity
class PSPACE contains all problems which can be solved using polynomial
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space resources.(19) The running time of an algorithm solving a problem in
PSPACE may be exponential. This seems to imply that the ergodic quan-
tum computer would need exponential space in contrast to usual mod-
els of computation (e.g. Turing machines and Boolean circuits). Now we
want to show briefly that even the ergodic quantum computer can solve
all problems in PSPACE in polynomial space.

The key idea is that even if an algorithm has exponential running
time, it has necessarily (by definition) a polynomial description of the
required sequence of operations. Therefore it is always possible to con-
struct a circuit U of polynomial depth such that the repeated application
of U solves the PSPACE problem.

In Ref. 20 we have shown that for every problem in PSPACE there is
a two qubit-gate quantum circuit U of polynomial size which computes a
function f : {0,1}n→{0,1}m in the following sense:

1. There is a (possibly exponentially large) natural number r such that

Ur(|x〉⊗ |y〉⊗ |0 . . . ,0〉)=|x〉⊗ |y⊕f (x)〉⊗ |0 . . .0〉 ,

where x∈{0,1}n is the input string and y is an arbitrary string in the out-
put register.2

2. The change of the state of the output register given by

y 	→y⊕f (x)

occurs for a certain power s of U , i.e., for all Uj with 0≤j <s the output
state is still y and for all Uj with s≤ j ≤ r−1 it is already y⊕f (x).

Furthermore, r and s are known by construction of U . This is
possible since there is always an upper bound on the running time of
an algorithm derived from the restricted space resources. By introducing
idle cycles (counting steps) one can guarantee that this bound is exactly
attained. Note that it does not make sense to require that the change
of the output state occurs during the rth application of U . Otherwise f
could be computed by a single application of U−1. This is shown by the
following argument.

Assume

Ur(|x〉⊗ |0 . . .0〉⊗ |y〉)=|x〉⊗ |0 . . .0〉⊗ |y⊕f (x)〉

2The construction in Ref. 20 is restricted to binary functions. However, the generalization to
several output qubits is straightforward.
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and

Ur−1(|x〉⊗ |0 . . .0〉⊗ |y〉)=|ψ〉⊗ |y〉 ,
where |ψ〉 is an appropriate state of ancilla+input register. Then we have

U−1(|x〉⊗ |0 . . .0〉⊗ |y⊕f (x)〉) = U−1Ur(|x〉⊗ |0 . . .0〉⊗ |y〉)
= |ψ〉⊗ |y〉.

This means that one application of U−1 maps y⊕ f (x) onto y, i.e., 0 is
mapped onto f (x).

The construction of Ref. 20 follows the usual philosophy of revers-
ible computation (21): The actual computation is done during the first r/2
cycles. Then the result is copied to the output register with Controlled-Not
gates. The only goal of the last r/2 cycles is to undo the computation and
restore the initial state.

The ergodic theory in Sec. 5 applies directly to PSPACE problems
after substituting N = 2g to N := 2rg. Furthermore one has to guarantee
the orthogonality condition (9) for all j �=k mod 2rg. The bit flips which
have been explained at the beginning of Sec. 5 have to be substituted by
incrementing counter registers.

The readout is done exactly as in Sec. 6. Given that we have localized
the clock wave front in the output region we have the correct result with
probability 1/2. As in Sec. 6 we can choose f in such a way that it indi-
cates whether the result has to be rejected. Hence the probability of suc-
cess is not reduced by the fact that the computation requires more cycles
of U .

8. CONCLUSIONS

We have proposed a model of quantum computing which does not
require any control operations during the computation process. The only
required operations are the initialization of basis states and the readout in
the computational basis.

The relevance of this model is two-fold: first it shows that, in princi-
ple, quantum computation can be realized with a small amount of quan-
tum control. Even though our interaction is rather artificially constructed,
it is a priori not clear that it is unphysical: It consists of finite range inter-
actions among cells of a crystal which contain some finite dimensional
quantum systems. This shows that relatively simple local interactions in
homogeneous solid states may have universal power for quantum comput-
ing without external control. We admit that it seems difficult to decide
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whether the interactions in real matter have such properties. However, this
may be an interesting question for future research.

The second aim of this paper concerns the thermodynamics of com-
putation. As in Refs. 6–8 the computation is performed in an energetically
closed physical system with the additional feature that only the prepara-
tion of basis states is required.

It would be desirable to find more simple Hamiltonians which are
universal for ergodic quantum computing. A basis to find them could be
given by simple 1-dimensional universal quantum cellular automata.
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