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Phenomenological approach of the thermodynamic
properties of the charge density wave systems
M. Saint-Paul and P. Monceau

Université Grenoble Alpes Grenoble INP, Institut Néel, Grenoble, France

ABSTRACT
The properties of the specific heat and elastic stiffness
components at the charge density wave phase transition in
several one-dimensional and two-dimensional materials are
examined. Here we show that the thermodynamic
properties of the rare earth tritelluride RTe3 (R = Te, Er) and
Lu5Ir4Si10 compounds can be explained in the framework
of a standard mean field Landau theory. The amplitude of
the experimental-specific heat jump measured at the
charge density wave (CDW) phase transition increases with
the transition temperature TCDW. The amplitude of the
experimental discontinuity of the longitudinal elastic
constants measured at the CDW phase transition scales
onto a single curve. The Landau approach is discussed as
well as experimental results.
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1. Introduction

The concept of a charge density waves (CDWs) which is induced by Fermi
surface nesting originated from the Peierls idea of electronic instabilities in
purely one-dimensional system is now often applied to charge ordering in
real low dimensional materials [1–60]. The microscopic origin of the CDW
phase transition is still debated and remains controversial [6,7]. Physical
CDW phenomenum has attracted a great interest in condensed matter
physics. In general, a real material does not go through a pure metal insulator
transition at TCDW and implies a partial gaping of the Fermi surface. The claim
that this transition is CDW by the community needs to be completely rethought
[6,7]. The question is how to extend the Peierls picture to real systems. Histori-
cally, CDWs have been associated with instabilities of quasi-one-dimensional
metals. But instabilities have been recognised to develop in three-dimensional
materials which involve strong electronic correlations [8]. Many materials have
been classified as CDW materials without a clear definition of the underlying
nature of their CDW states. Four types of CDW have been proposed in [6,7]:
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(1) Type I, CDW in one-dimensional conductors have their origin in the
Peierls mechanism such as K0.3MoO3, NbSe3, TTF-TCNQ, TaS3, (TaSe4)2I
[3,9–14]. In a strictly one-dimensional material with short-range inter-
actions, there are no phase transition at finite temperature because fluctu-
ations destroy long-range order. A finite-temperature transition only
occurs as a result of interchain interactions and Landau theory should
describe with a two-component order parameter the ordering transition
of a quasi-one-dimensional system.

(2) Type II, CDW in two-dimensional materials: Transition metal dichalco-
genides (TMD) have been the centre of CDW research since several
decades but the results are still confusing [15–20]. TMD are quasi-two-
dimensional materials exhibiting a wide variety of properties that are
both fundamental and applied interest. Transitions in the TMD are not
CDW in the sense of a Peierls picture; even in these layered materials
they are in some cases 3D in nature. TMD 2H-NbSe2 is known to be an
archetype-layered TMD with a superconducting transition temperature
of 7.3 K. Quasi-two-dimensional layered TMD have been the subject of
intense research owing to their rich electronic properties resulting from
lower dimensionality. 1T-TiSe2 undergoes a second-order phase transition
to a commensurate lattice distortion 2× 2× 2. Some authors described
TiSe2 as a CDW transition [19,20]. In fact this transition is a commensurate
structural transition which induces periodic charge modulation.

The family of rare earth tritellurides RTe3, R being an element of the
Lanthanide group is a model of a two-dimensional charge density
system. The origin of CDW in RTe3 is related to the momentum-depen-
dent electron phonon coupling [21–24]. RTe3 are quasi-two-dimensional
metals where a clearer situation is encountered. The electronic structure
is more simple being built by broad p-type bands of Te atoms [21–25].

Rare earth tritellurides compounds TbTe3, ErTe3 and HoTe3 have been
studied intensively [21–28].

The RTe3 compounds crystallise in the orthorhombic structure
described by the Cmcm space group. Lattice consists of stacked Te layers
alternating with RTe layers with unit cell with a large anisotropy in the
lattice parameters a ≈ c ≈ 4 Å and b ≈ 25 Å [23]. The CDW in RTe3 is
characterised by large displacements and large gap in the electronic struc-
ture. Periodic lattice distortions are associated with the presence of an
incommensurate CDW along both the �a and �c crystallographic axes
shown by electron diffraction. The incommensurate lattice modulation
has a unidirectional wavevector q1 = (2/7)c∗ (c∗ = 2p/c) at the upper
CDW phase transition and the wavevectror q2 = (1/3)a∗ (a∗ = 2p/a) is
perpendicular to the first wavevector q1 at the lower CDW phase transition
which occurs with heavy rare earth atoms.

2 M. SAINT-PAUL AND P. MONCEAU



(3) Type III, CDW in three-dimensional materials: The origin of CDW in
three dimensional materials is not yet well defined. The intermetallic
compound Lu5Ir4Si10 exhibits a weakly first-order (small thermal hyster-
esis of 1 K) CDW transition at TCDW ≈ 80 K associated with a commen-
surate lattice modulation along the c axis with a seven-unit cell period
[29–37]. Rare earth compounds of the type Lu5Ir4Si10 display various
ground states, charge density waves and superconductivity [31,32]. The
competition between CDW and superconductivity was demonstrated
through the observation of enhanced superconductivity upon suppression
of the CDW by pressure Lu5Ir4Si10 [31]. The same pressure dependence
is observed on the superconducting and CDW phase transitions which
gives a strong evidence for the involvement of the Fermi surface. X-
rays revealed in LaAgSb2 a development of periodic lattice modulation
along the �a axis at the upper CDW phase transition at 210 K and an
additional ordering along the �c axis at the lower CDW phase transition
at 185 K [35]. Finally, the mechanism responsible for the CDW state
found in Fe3O2BO3 is different from that of the Peierls mechanism
and is related with excitonic instabilities [36,37]. Fe3O2BO3 belongs to
the family of the oxyborates and is characterised by the presence of
low-dimensional units in the form of ladders along the �c-axis. This
material presents a structural transition concomitant with the charge
ordering of itinerant electrons in the rungs of the ladders. This transition
is associated with the formation of a CDW. The CDW observed by
Mössbauer spectroscopy is associated with atomic displacements trans-
verse to the direction of the ladders.

Instabilities in the Fermi surface can lead to ground states such as spin
density wave (SDW) in pure three-dimensional Cr [38–46]. Below 312 K
the electrons form a SDW with a period which is incommensurable with
the lattice. The properties of Cr is surveyed by Fawcett [41]. The tran-
sition to the SDW state at the Néel temperature in Cr was explained
by Walker [40] using a Landau theory with an order parameter related
to the components of the SDW polarisation vector.

(4) Type IV, CDW in cuprates: Recently, the competition between CDWs
and superconductivity was observed in superconducting cuprates
where CDWs emerge when superconductivity is weakened by a magnetic
field [47].

The elastic constants are thermodynamic derivatives. They are important
together with the specific heat and thermal expansion for the equation of
state of a material [48–50]. The purpose of this paper is to examine the
experimental specific heat results and the measurements of the elastic
stiffness components at the CDW phase transition in the rare earth tritellur-
ides TbTe3, ErTe3, HoTe3 and the compound Lu5Ir4Si10. The experimental

PHILOSOPHICAL MAGAZINE 3



data are analysed in the framework of a phenomenological Landau approach
[51–54]. As we show below, it appears that CDW transitions in several
materials can be described with similar parameters in the mean field approxi-
mation [1]. The amplitude of the specific heat jump at the CDW transition
increases linearly with increasing phase transition temperature TCDW. In the
same manner, the amplitude of the discontinuity of the velocity of the longi-
tudinal mode increases with increasing TCDW, in fact a quadratic dependence
is observed. Landau theory can succesfully explain the mean field character
of a phase transition but when T is sufficiently close to the phase transition
temperature the contribution related to fluctuations is comparable to the
mean field discontinuity, the critical regions are given by the Ginsburg cri-
terion [1,3,10]. Departures of the thermodynamic properties from the
mean field behaviour at the CDW phase transition are attributed to fluctu-
ations which belong to the 3D XY criticality class [1,55,56].

2. Thermodynamic properties

2.1. Landau theory of a second-order phase transition

The physics of quasi-one-dimensional solids which undergo a Peierls transition
was discussed in terms of a phenomenological Landau approach by McMillan
for the CDWs in TMDs with the CDW as an order parameter [42–44]. The
quantities of interest are the temperature at which the transition TCDW

occurs and the order parameter Q. The widespread use of Landau theory for
analysing incommensurate phases has produced a voluminous literature [57].
Landau theory in its simplest form starts with a free energy F of the system
expressed as a power series expansion in the order parameter Q in the mean
field approximation at a second-order phase transition:

F(Q, T)0 = F(0, T)0 + (1/2)a(T − TCDW)Q2 + (1/4)cQ4 (1)

where the coeficients a and c are to be estimated. The order parameter that
minimises the free energy in Equation (1) (∂F

∂Q = 0) is

Q =
��
a
c

√ ������������
TCDW − T

√
(2)

The order parameter Q(0) can be normalised to 1 at 0 K and gives the relation

Q(0)2 = a
c
TCDW (3a)

c = aTCDW (3b)

There is a specific heat jump DCP at a second-order phase transition
(Table 1). An example (TbTe3) is shown in Figure 1. The specific heat jump
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Table 1. Materials; molar volumes given in m3; phase transition temperatures; specific heat
jumps; velocity discontinuities.

Materials

Materials TCDW Elastic modulus
molar vol. DCP velocity discont.

K0.3MoO3 180 K Y =250 GPa
3.5× 10−5 m3 3 J mol−1 K−1 [10] DVY/VY = 0.01 [10]
NbSe3 145 K
4.1× 10−5 m3 0.3 J mol−1 K−1 DV/V = 0.0005 [15]
(TaSe4)2I 260 K C33
7.8× 10−5 m3 0.8 Jmol−1 K−1 DV33/V33 = 0.001 [3]
TTF-TCNQ 55 K Y = 60 GPa
2.5× 10−4 m3 2.5 Jmol−1 K−1 DVY/VY = 0.01 [14]
2H-TaSe2 120 K C11 = 120 GPa
3.9× 10−5 m3 4 Jmol−1 K−1 [12] DV11/V11 = 0.0005
2H-NbSe2 30 K C11 = 108 GPa
4× 10−5 m3 0.5 Jmol−1 K−1 [16] DV11/V11 = 0.0005 [17]
TiSe2 200 K C33 = 120 GPa
4× 10−5 m3 1 Jmol−1 K−1 [21] DV33/V33 = 0.05 [20]
TbTe3 330 K C33 = 50 GPa
7.1× 10−5 m3 3 Jmol−1 K−1 [26] DV33/V33 = 0.01 [26]
ErTe3 260 K C33 = 50 GPa
7× 10−5 m3 1 Jmol−1 K−1 [27] DV33/V33 = 0.015 [28]
HoTe3 280 K C33 = 50 GPa
7× 10−5 m3 DV33/V33 = 0.025 [28]
Lu5Ir4Si10 80 K C11 = 230 GPa
2× 10−4 m3 diverges [32] DV11/V11 = 0.005[34]
LaAgSb2 210 K
6.3× 10−5 m3 0.5 Jmol−1 K−1 [35]
Fe3O2BO3 290 K
5× 10−5 m3 15 Jmol−1 K−1 [36]
Cr 310 K C33 = 400 GPa
7.2× 10−6 m3 3 Jmol−1 K−1 [38] DV33/V33 = 0.05 [39]

Figure 1. Specific heat jump at the CDW phase transition in TbTe3, data taken from [26]. (Colour
online)
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DCP deduced from Equation (1) is given by

S = − ∂F
∂T

(4)

DCP

VmT
= ∂S

∂T
(5)

DCP

Vm
= a2

2c
TCDW (6)

where Vm is the volar volume. The order parameter is defined by the energy gap
Δ in the one-dimensional chain model of Allender et al. [45] and the Landau
parameters a′ and c′ are given by:

F(D, T)0 = F(0, T)0 + (1/2)a′(T − TCDW)D2 + (1/4)c′D4 (7a)

a′ = N(EF)/TCDW; c′ = 0.1N(EF)/(k
2
BTCDW

2) (7b)

At 0 K the order parameter D(0) is related to the parameters a′ and c′

D(0)2 = a′

c′
TCDW (8a)

D(0)2 = 10k2BTCDW
2 (8b)

The amplitude of the specific heat anomaly calculated in the Allender et al.
model increases linearly with increasing TCDW as expected at a second order
phase transition, Equation (6) is similar to the BCS relation [1,42–44].

DCP/Vm ≈ 10N0N(EF)k
2
BTCDW (9)

N0 is the Avogadro number. Similar values of N(EF) are found in the CDW

Table 2. Fermi energy EF , density of states at the Fermi level N(EF) (u.c. =unit cell).
Materials

K0.3MoO3 TCDW = 180 K EF ≈ 0.24 eV [1]
N(EF ) ≈ 3 states/eV u.c.

NbSe3 TCDW = 145 K EF ≈ 0.1 eV [1]
N(EF ) ≈ 2 states/eV u.c.

(TaSe4)2I TCDW = 260 K EF ≈ 0.7 eV [1]
N(EF ) ≈ 1.3 states/eVu.c.

TTF-TCNQ TCDW = 55 K EF ≈ 0.2 eV [8]
N(EF ) ≈ 3 states/eV u.c.

2H-TaSe2 TCDW = 120 K EF ≈ 0.6 eV [8]
N(EF ) ≈ 5 states/eV u.c.

TiSe2 TCDW = 200 K EF ≈ 0.2 eV [8]
N(EF ) ≈ 1 states/eV u.c.

TbTe3 TCDW = 330 K
N(EF ) ≈ 1.5 states/eV u.c. [23]

Lu5Ir4Si10 TC = 80 K
N(EF ) ≈ 0.26 states/eV atom [30]
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materials (Table 2). In the case of a spin density wave, the thermodynamic
quantities near TSDW can be described in terms of the Landau theory which
follows the description of the charge density wave [1,42–44]. As for a CDW
the development of the SDW ground state opens up a gap at the Fermi level
leading to a metal insulator transition [1,22,40–46]. The interpretation of the
elastic constant at second order phase transition is based on an expansion of
the free energy density in powers of the strain components developed by
Rhewald [51]. Considering here specifically the RTe3 compounds the expansion
is limited to the longitudinal strains e1 and e3 along the in-plane crystallo-
graphic �a and �c axes and Equation (1) is modified:

F(D, T, e1, e3) = F(D, T)0 + (1/2)C11,0e1
2 + (1/2)C33, 0e3

2

+ g′1e1D
2 + g′3e3D

2 + h′1e12D
2 + h′3e3

2
D2

(10)

where (1/2)C11,0e21 + (1/2)C33,0e23 is the elastic background energy at D = 0 and
g′1, g

′
3, h

′
1 and h′3 are the coupling constants. At a CDW phase transition the

longitudinal strain components couple with the square of the order parameter.
The new elastic constant are given by

C11 = C11,0 − (d2F/dD de1)
2xD (11a)

C33 = C33,0 − (d2F/dD de3)
2xD (11b)

where xQ denotes the order parameter susceptibility [51]

xD = (d2F/dD2)−1 (12)

Finally the new elastic constant are given by

C11 ≈ C11,0 − 2g′1
2
/c′ (13a)

C33 ≈ C33,0 − 2g′3
2
/c′ (13b)

It results that a decrease of the elastic constants C11 and C33 occurs at a
second-order phase transition. The behaviours of the elastic constant C33

observed at the CDW phase transition in TbTe3 (Figure 2), ErTe3 (Figure 3)
and HoTe3 (Figure 4) are shown. The coefficient c′ in the Allender model
(Equation (7b)) varies as c′−1 ≈ T2

CDW. It results that the discontinuity of the
elastic constant increases as the square of the temperature TCDW In
summary, in the Allender model [45], at the CDW phase transition the
specific heat jump DCP/Vm increases as TCDW (Equation (10)) and the elastic
constant discontinuity DC11 or DC33 increases as TCDW

2.
In general the effect of a phase transition on the elastic constants in any

second-order phase transition can be calculated from the derivative of the
strain dependence of the transition temperature TCDW using the Ehrenfest
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relations reformulated by Testardi [50]. In the anisotropic case for a strain com-
ponent e1 along the crystallographic �a direction the change in the elastic
stiffness C11 is given by the logarihmic derivative of TCDW.

DC11 = DCPTCDW

Vm
[d( ln (TCDW))/de1]2 (14)

It results that the discontinuity in the elastic stiffness component increases lin-
early with Dg = DCP/TCDW and is proportional to the square of the phase

Figure 2. Velocity discontinuity (V33) and attenuation (dB/cm) of the longitudinal C33 mode at
the CDW phase transition in TbTe3. The dashed (green) curve is calculated using
Att = 6vtLK/(1+ (vtLK)

2) with tLK = 2× 10−12{(332− T)/332}−1 s at frequency
v/2p = 15 MHz, data taken from [26]. (Colour online)

Figure 3. (a) Velocity decrease (V11) of the longitudinal C11 mode at the CDW phase transition in
ErTe3. The dashed (pink) curve is calculated using DV/V = 0.319−0.342{(T − 262)/262}0.026.
(b) Attenuation of the C11 mode. The dashed (green) curve is calculated using
Att = 20vtLK/(1+ (vtLK)

2) with tLK = 5× 10−11{(262− T)/262}−1 s. The dashed (red) curve
is calculated with Att = 40vtF/(1+ (vtF)

2) with tF = 1× 10−11{(T − 262)/262}−1 s at
frequency v/2p = 15 MHz, data taken from [27]. (Colour online)
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transition TCDW because the logarihmic derivative of the strain dependence of
TCDW does not change very much with TCDW [22].

DC11 = DgTCDW
2

Vm
[d( ln (TCDW))/de1]2 (15)

Finally below TCDW in the ordered phase, consequently to the coupling
terms h′1e1

2Q2 + h′3e3
2Q2, the temperature dependence of the elastic

constants C11 and C33 (or velocity) follows the temperature
dependence of the order parameter (black dotted curve in Figure 2) as
explained in [51]:

C11 ≈ h′1Q
2 and C33 ≈ h′3Q

2 (16)

2.2. Landau theory of a first order phase transition

A cubic term is included in the expansion of the free energy in case of a first
order phase transition [42–44,49]. The third-order term in Equation (1) is dis-
cussed by Moncton et al. [58] in the case of 2H-TaSe2 and 2H-NbSe2. There is a
third-order term only in the case of a commensurate CDW phase. The require-
ment between the three wavevectors involved in the Umklapp process associ-
ated with the third-order term is satisfied for a commensurate CDW wave
but not for an incommensurate wave. This condition is verified at the phase
transition in Lu5Ir4Si10 where a commensurate lattice modulation of seven
unit cells is observed [33].

For a tetragonal-symmetry system (crystallographic axes �a = �b and �c) such
as Lu5Ir4Si10 [29–31] there are two independent longitudinal elastic constants

Figure 4. (a) Velocity decrease (V33) of the longitudinal C33 mode at the CDW phase transition in
HoTe3. (b) Attenuation of the C33 mode. The dashed (green) curve is calculated using
Att = 10vtLK/(1+ (vtLK)

2) with tLK = 2× 10−11{(284− T)/284}−1 s the dashed (red) curve
is calculated using Att = 10vtF/(1+ (vtF)

2) with tF = 3× 10−11{(T − 284/284)}−1 s at
frequency v/2p = 15 MHz, data taken from [28]. (Colour online)
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C11 = C22 and C33. The Landau free energy has the form:

F(Q, T, e1, e3) = F(0, T)0 + (1/2)a(T − T0)Q
2 − (1/3)bQ3

+ (1/4)cQ4 + (1/2)C11,0e1
2 + (1/2)C33,0e3

2 + g1e1Q
2 + g3e3Q

2
(17)

where g1, g3, h1 and h3 are the coupling constants. This expression of the free
energy is discussed in [49], three temperatures are defined: T0 which is the tran-
sition equilibrium temperature, T1 and TC.

T1 is defined by ∂F/∂Q = 0 it gives T1 = T0 + b2/(4ac).
Above T1 the order parameter is zero (Q=0).
In the temperature range T0 , T , T1 the system is characterised by a stable

state and a metastable state.
TC is defined by ∂F/∂Q = 0 and F=0, it results TC = T0 + 2b2/(9ac)
There is a discontinuous jump of the order parameter (first order)transition

at TC.

Q = b
2c

+
��
a
c

√ ���������
T C − T

√
(18)

In the temperature range T0 , T , TC the system has a stable state withQ = 0
and a metastable state with Q=0. Finally below T0 the free energy has two
minima both corresponding to Q = 0

The occurence of metastable states in the temperature range between T0 and
T1 generates thermal hysteresis [49]. The difference between T1 and T0 gives an
account for the hysteresis observed between heating and cooling. In the case of
Lu5Ir4Si10 the phase transition occurs at T0 = 80 K on cooling and at T1 = 81 K
on heating [34]. The thermal hysteresis DThys is related to the coefficient b by
the relation DThys = T1 − TC ≈ b2/(4ac). The small hysteresis DThys ≈ 1 K
implies that the cubic coefficient b is small compared to the quartic coefficient
c. Using Q(0)2 ≈ (a/c)TC from Equation (18) it results that
DThys ≈ b2TC/(4c2Q(0)

2). Taking Q(0) ≈ 1 and TC = 80 K it gives b/c ≈ 1/5
for Lu5Ir4Si10.

The first-order phase transition in Lu5Ir4Si10 is associated with a latent heat
which is hard to detect and evaluate [30].

The specific heat in the low temperature phase transition is given by:

DCP

VmT
= ∂S

∂T

{ }
P
= b

4
[a/c]1.5

1����������
(TC − T)

√ + a2

2c
(19)

where Vm = 2× 10−4 m3 is the molar volume. The first contribution of the
specific heat follows a critical temperature dependence with the critical expo-
nent −0.5 which is reponsible of the divergence of the specific heat at TC.
The second contribution to the specific heat corresponds to the value obtained
at a second-order phase transition.

10 M. SAINT-PAUL AND P. MONCEAU



The new elastic stiffness components are

C11 ≈ C11,0 − 1
2
g21
c
− g21

c
b���
ac

√ 1��������
TC − T

√ (20a)

C33 ≈ C33,0 − 1
2
g23
c
− g23

c
b���
ac

√ 1��������
TC − T

√ (20b)

Combining the elastic data [34] with the specific heat results [30] (Table 1) allows us
to determine all the coefficients of the free energy expansion for Lu5Ir4Si10:
a = 2× 105 J K−1 m−3, b = 3× 106 Jm−3, c = 2× 107 Jm−3,
g1 ≈ g3 ≈ 9× 107 Jm−3. These parameters are evaluated using Q(0) = 1 at 0 K.
An isotropic coupling constant with the components g1 = g2 ≈ g3 is found in Lu-

5Ir4Si10 having a tetragonal symmetry.Thevalues obtained forTbTe3 are the follow-
ing: a = 8× 104 J K−1 m−3, c = 3× 107 Jm−3, g1 ≈ g3 ≈ 1× 108 Jm−3 and
g2 = 0 calculated with the data taken from [26]. In contrast with Lu5Ir4Si10 a
strong anisotropic coupling constant, whose components are g1, g2 = 0, g3, charac-
terises the (upper) CDWphase transitions in the two-dimensional rare earth tritel-
lurides [23–28] and transition metal dichalcogenides compounds [16–21].

It is worth to note that the numerical values of the Landau coefficients a, c and the
coupling constant g found in the materials TbTe3 and Lu5Ir4Si10 are very similar.

3. Discussion

In the following section, several materials will be discussed whose thermodyn-
amic properties have been studied at the CDW phase transition.

The specific heat per unit volume jumps measured at the CDW (SDW) phase
transition in several materials are reported in Table 1 and they are shown in
Figure 5.

(a) The quasi-one dimensional conductors K0.3MoO3, NbSe3 and TTF-TCNQ
exhibit a Peierls transition at 180, 145 and 55 K respectively. The thermo-
dynamic properties have been studied in details [10–15]. The K0.3MoO3

material is a model for the quasi-one-dimensional conductors.
(b) An upper limit DCP ≈ 0.5 Jmol−1 K−1 has been estimated on the magni-

tude of any anomaly in the specific heat associated with the 30 K CDW
transition in transition metal dichalcogenide 2H-NbSe2 [16,17]

(c) Specific heat jumps DCP ≈ 1 Jmol−1 K−1 in ErTe3 and DCP ≈ 3 Jmol−1 K−1

in TbTe3 are observed at the upper CDW phase transition TCDW1 respect-
ively 330 and 260 K [26,27]. A specific heat jump DCP ≈ 0.5 Jmol−1 K−1 is
observed at the lower CDW transition TCDW2 (150 K) in ErTe3.

(d) The first-order phase transition observed in Lu5Ir4Si10 is characterised by a
large specific heat jump, changes in the thermal expansion coefficients, and
a sudden drop of the electric resistivity [29–33].
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A CDW is observed in LaAgSb2 at 210 K [35], but no elastic constant
measurements are reported in this material.

(e) The oxyborate Fe3O2BO3 presents a charge density wave transition at 290 K
which is associated with a well defined anomaly in the specific heat reported
in Figure 2 of [36]. Mössbauer spectroscopic studies are reported in [37]

(f) In the case of spin density waves in antiferromagnetic Cr, a specific heat
jump [38] and a decrease in the elastic constant C11 [39] observed at the
SDW phase temperature TN = 310 K. They are in agreement with the
mean field theory and the results satisfy the relations of Ehrenfest type [38].

The experimental data obtained with the CDW systems K0.3MoO3, TTF-
TCNQ, 2H-NbSe2, TbTe3 and ErTe3 can be described reasonably by the BCS
lineal rependence Equation (10) (red dotted line in Figure 5) and described by:

DCP/Vm = ATCDW (21a)

A ≈ 10N0N(EF)k
2
B (21b)

where N(EF) is the density of states and N0 is the Avogadro number The value
A = 200 J K−2 m−3 gives a density of state N(EF) ≈ 2 states/eV/unit cell for
TbTe3 which is similar to the value N(EF) = 1.5 states/ev/unit cell reported
in [24] (Table 2). A similar value of the density of states is found for the com-
pounds K0.3MoO3, NbSe3. A larger value of about 7 states/ev/unit cell is
deduced for TTF-TCNQ. The specific heat jump measured with 2H-TaSe2 do
not follow the BCS behaviour (Equation (21b)) as explained by McMillan

Figure 5. (a) Velocity decrease (V11) of the longitudinal C11 mode at the CDW phase transition in
Lu5Ir4Si10. The dotted cyan curve is calculated using DV/V = 2× 10−4{(80− T)/80}−1

(cooling). (b) Attenuation of the C11 mode. The dashed red curves are calculated using
Att = 10vtLK/(1+ (vtLK)

2) with tLK = 1.1× 10−11{(80− T)/80}−1 (s) (cooling),
tLK = 1.1× 10−11{(81.8− T)/81.8}−1 (s) (heating) at frequency v/2p = 15 MHz, temperature
sweep rate 0.1 K/min, data taken from [34]. (Colour online)
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[42–44] who reformulated the theory, assuming that the coherence length is
very short and that the dominant entropy is the lattice entropy. A pseudogap
in the density of states of the electronic states was introduced in the microscopic
theory of the quasi-one-dimensional materials [46]. TiSe2 has received signifi-
cant research attentions but the microscopic model is still unknown, an exci-
tonic insulator sate has been proposed to explain the charge ordering in this
compound [9]. A weak first-order Néel transition is observed in chromium
below at TN ≈ 312 K is due to a spin density wave (SDW) in the conduction
electron gas [38–41]. A survey of the properties of chromium is given by
Fawcett [41]. The richness of the phenomena observed in Cr derives from its
itinerant spin-density-wave antiferromagnet and many theorerical and exper-
imental studies have been reported. A phenomenological model based on on
a mean field was proposed by Walter and [40,41]. The Landau free energy of
the system is expanded in powers of the components of the SDW polarisation
(linear or helical) vector. The small molar volume of Cr yields that the discon-
tinuity in the specific heat per unit volume at TN is ten times larger than the
value given by Equation (21a).

The intermetallic compound Lu5Ir4Si10 exhibits a first order structural phase
transition with a divergence of the specific heat anomaly.

3.1. Elastic constant anomaly at the CDW phase transition

The rare earth tritellurides RTe3 crystallise in a weakly orthorhombic structure
with the in-plane crystallographic �a and �c axes and lattice consists of stacked Te
layers alternating with RTe layers. In contrast Lu5Ir4Si10 has a tetragonal-sym-

metry system (crystallographic axes �a = �b and �c). The longitudinal modes C11

and C33 propagate along the crystallographic �a and �c axes respectively at a vel-

ocity V11 =
���
C11
r

√
and V33 =

���
C33
r

√
, respectively, and ρ is the mass density. The

discontinuities DVii/Vii (i=1 and 3) of the velocity of the longitudinal modes
measured at the CDW (SDW) phase transition are shown in Figure 6.

A small discontinuity of velocity DV11/V11 ≈ 0.0005 in the longitudinal
C11 mode propagating in the basal plane is found at the low phase transition
temperature 30 K transition in 2H-NbSe2 [16]. In contrast a large discontinu-
ity (DV11/V11 = 0.05) of the velocity of the elastic constant C11 of TiSe2 is
measured at the high phase transition temperature TCDW = 200 K [18]. A
large decrease of the velocities DV11/V11 ≈ 0.01 and DV33/V33 ≈ 0.01 of
the longitudinal C11 and C33 modes is observed at the upper CDW phase
transitions in ErTe3 and TbTe3 [26,27]. In contrast, a small decrease
DV33/V33 ≈ 0.002 of the longitudinal C33 mode is observed at the lower
CDW phase transitions TCDW2 150 and 120 K in ErTe3 and HoTe3
respectively.
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A remarkable feature is that many experimental data DVii/Vii with i=1 and 3
follow approximately a T2

CDW dependence (black dashed line) in Figure 6 given
by:

DVii/Vii = BTCDW
2 (22)

B = 4× 10−7 K−2. This temperature dependence is approximately verified by
most of the materials such as quasi one dimensional conductor K0.3MoO3,
transition metal dichalcogenide 2H-NbSe2 and rare earth tritellurides
TbTe3, ErTe3 and HoTe3 at the upper and lower CDW phase transitions
and Cr. They are characterised by the same coefficient B (Equation (22))
related to the longitudinal mode C33 or C11 in the Landau approach. Such
a quadratic behaviour of DVii/Vii (i=1 and 3) in Equation (22) is expected
from the Ehrenfest relation (Equation (15)). Similar experimental value of
the stress derivative of the logarithmic of the transition temperature
d( ln (TCDW)/ds) ≈ 0.3 and 0.8GPa−1 is found in rare earth tritellurides
TbTe3 [26] and 2H-NbSe2 [16].

The discontinuities DV11/V11 ≈ 0.005 and DV33/V33 ≈ 0.005 in the vel-
ocities of the longitudinal C11 and C33 modes found at the first-order structural
phase transition at 80 K in Lu5Ir4Si10 [34] are situated on the black dotted line
described by Equation (25). But a first-order transition is observed in the case of
Lu5Ir4Si10.

In contrast 2H-TaSe2, (TaSe4)2I, and NbSe3 do not follow Equation (25)
(black dotted line Figure 6).

Figure 6. Specific heat jumps at the CDW and SDW phase transition in several materials as a
function of TCDW (TCDW) (Table 1); Tu means upper CDW Phase transition temperature
TCDW1 = 260 K (ErTe3) and Tl means lower CDW phase transition temperature TCDW2 = 150 K
(ErTe3). The red dashed line is calculated using DCP/Vm = ATCDW with
A = 200 J K−2 m−3. (Colour online)
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The coupling constants g′1 and g′3 can be deduced from the experimental-
specific heat jumps DCP and the velocity decreases DV11/V11 and DV33/V33

using Equation (13a) and Equation (13b) (the order parameter being the
energy gap [45]) which gives:

g′1
2 ≈ DCP

Vm

DV11

V11

C11

100kB
4TCDW

3N0
(23a)

g′3
2 ≈ DCP

Vm

DV33

V33

C33

100kB
4TCDW

3N0
(23b)

In order to compare the value of the coupling constant of the rare earth tri-
tellurides with those of the transition metal dichalcogenides where a 3 state
CDW state is found, we take the factor of 3 into account [42–44]. Furthermore
a larger value of the elastic stiffness components C11 or C33 of 100 GPa is used in
Equation (23a) or Equation (23b) for TbTe3 and ErTe3 in contrast to the
smaller value 50 GP reported in Table 1. The values of g′1 and g′3 are now
given in eV−1 m−3 and they are reported in Figure 7. A mean coupling coeffi-
cient value ≈0.08 eV−1 m−3 is obtained for the quasi-one conductors TTF-
TCNQ and K0.3MoO3 and transition metal dichalcogenides 2H-NbSe2 and
TiSe2. For these materials large values of the Young modulus Y ≈ 100 GPa
are reported (Table 1)

Similar values g′1 ≈ g′3 ≈ 0.04 eV−1 m−3 are found at the upper CDW phase
transition respectively in the rare earth tritellurides TbTe3 and ErTe3. Such a
coupling constant g′1(g

′
3) is related to the atomic displacements in the square

Te sheets associated to the CDW phase transition [22–24]. The

Figure 7. Velocity discontinuities (indexes are not indicated) at the CDW and SDW phase tran-
sitions in several materials as a function of TCDW (TSDW) (Table 1). Tu means upper CDW Phase
transition temperature TCDW1 = 260 K (ErTe3) and Tl means lower CDW phase transition temp-
erature TCDW2 = 150 K (ErTe3). The black dashed line is calculated using DV/V = BT2CDW with
B = 4× 10−7 K−2. (Colour online)
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incommensurate lattice modulation has a unidirectional wavevector
q1 = (2/7)c∗ (c∗ = 2p/c). The crystallographic �b is perpandicular to the Te
planes. No atomic displacement along �b is in agreement with the component
g2 = 0 observed at the upper CDW transition in TbTe3, ErTe3 and HoTe3.
Small dips in the velocity (DVii/Vii ≈ 0.002, i=1 and 3) are detected for the
longitudinal C11 and C33 modes at the lower CDW phase transition (TCDW2)
in ErTe3 and HoTe3 (Table 1) having a wavevectror q2 = (1/3)a∗

(a∗ = 2p/a) perpendicular to the first wavevector q1. A slightly smaller coup-
ling constant is obtained for this transition: g′1 ≈ g′3 ≈ 0.03 eV−1 m−3. Aniso-
tropy of the coupling constant is related to the uniaxial lattice distortion
which accompanies the CDW phase transition.

In contrast the acoustic anomaly in Cr is quantitatively more pronounced
which is reflected by the larger value of the order parameter coupling whose
magnitude is found to be g′3 ≈ 0.3 eV−1 m−3 (Figure 7).

We have presented an analysis of the anomalies of the longitudinal elastic
constants of several materials in the vicinity of the CDW phase transition
(normal-incommensurate second-order phase transition). The analysis has
been performed in the framework of the mean field theory and using the Allen-
der et al. model [45].

3.2. Dynamic behaviour

Only static effects of the order parameter have been considered above. The
sound velocity is primarily determined by the static properties of the order par-
ameter. The attenuation and part of the velocity behaviour are connected with
the dynamics of the order parameter [10,51–54]. Some features of the sound
velocity and especially the ultrasonic attenuation depend on the dynamic
behaviour of the order parameter. The fluctuations of the order parameter
near the second-order phase transition leads to a decrease of the sound velocity
and an increase in the attenuation coefficient. Many studies of the dynamics in
incommensurate phases have been reported as in [53,54]. The characteristic
feature of incommensurate structure is the presence of two branches in its
vibrational spectrum: Amplitude and Phase modes (amplitudon and phason).
The phason branch has no gap and the amplitudon is similar to a soft mode
[55]]. The interaction terms between the acoustic waves and the amplitude
and phase modes have been derived by Bruce and Cowley [55]. The interactions
with the amplitude mode affects the velocity of the acoustic wave but not the
interactions with the phase mode. Dynamic behaviour is usually discussed in
terms of two distinct mechanisms [54]: relaxation behaviour and fluctuation
behaviour. The first term called Landau-Khalatnikov term is related to the
relaxation of the order parameter which takes place in the ordered phase.
The influence of amplitude mode has been frequently considered in the incom-
mensurate phase transitions [54]. The relaxation behaviour is characterised by
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the relaxation time tLK with tLK = t0LK(1− T/TCDW)−1 and tLK is infinite at
TCDW [53]. The amplitude mode is similar to a soft mode, vA = 0 at the
phase transition TCDW. Velocity and attenuation are expressed as a function
of the measurement angular frequency ω and tLK by

DV
V

{ }
LK

= DV
V

{ }
LK,0

v2t2LK
1+ vt2LK

(24)

AttLK = DV
V2

{ }
0

v2tLK
1+ vt2LK

(25)

The indexes are not indicated in this section. The temperature dependence of
the attenuation just below TCDW is described by a small time constant
t0LK ≈ 2× 10−12 s observed for TbTe3 (Figure 2). A slightly larger time constant
t0LK ≈ 1× 10−11 s is found for ErTe3, HoTe3 and Lu5Ir4Si10 (Figures 3 and 8,
Table 3).

Many aspects of the Landau-Khalatnikov behaviour of the elastic velocity
and attenuation of the longitudinal C11 and C33 near the incommensurate
CDW transition in RTe3 are similar to those found at the normal-incommen-
surate structural transition such as K2SeO4 and Rb2ZnCl4 [51–54]. The values
of the relaxation times related to the Landau Khalatnikov behaviour tLK are
very close (Table 3). Nevertheless, the amplitudes of the anomalies in attenu-
ation observed in rare earth tritellurides are smaller. But the physical mechan-
isms which drive the transition in isulators and conductors are different. In
conductors, the incommensurate structure arise from the interaction between
conduction electrons and the atomic lattice (Peierls mechanism) [1,56].
Coulomb and short range forces exist in insulators and the displacive transition
has a lattice-dynamical origin [57].

Figure 8. Coupling coefficients g′1 or g
′
3, Tu means upper CDW phase transition temperature

TCDW1 = 260 K (ErTe3) and Tl means lower CDW phase transition temperature TCDW2 = 150 K
(ErTe3). (Colour online)
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The second contribution is related to fluctuations and it is not easy to sep-
arate both contributions at temperatures below the phase transition [54]. For
this reason, the fluctuation behaviour is considered only at temperatures
above the phase transition and is characterised by the relaxation time tF
defined by tF = t0F(T/TC − 1)zn where z is the critical dynamic exponent
defined by tF = jz and j = j−n

0 is the correlation length.
The fluctuation contributions to the velocity V and attenuation are described

by the following phenomenological forms [51–54]:

DV
V

{ }
F
≈ t−m; AttF ≈ v2t−m−zn (26)

The incommensurate systems have been discussed by Cowley and Bruce [55]
who predict that the critical behaviour near phase transition should conform
to 3D-XY universality. The fluctuation contributions have the critical exponents
m = −0.026 and zn = 1.36. They are described by functions of the form [53]:

DV
V

{ }
F
= C− Dt0.026 (27)

AttF = C− Dt0.026

V

{ }
v2tF (28)

where the reduced temperature is t = (T − TCDW)/TCDW) and C and D are
adjustable parameters, ω is the measurement angular wave frequency.

The critical behaviours observed with the quasi-one-dimensional conductor
K0.3MoO3 [10] and the rare earth tritellurides TbTe3, ErTe3 and HoTe3 (Figures
2–4,8 and 9) are in agreement with the 3D-XY model characterised by the criti-
cal exponents 0.026 and zn = 1.36 [26–28].

In contrast, the critical exponent (m = 0.5) observed for Lu5Ir4Si10 in Figures 8
and 10 in the ordered phase is in agreementwith (Equation (20a)). A smaller expo-
nent m = 0.2 is found in the disordered hight-temperature phase (Figure 10).

Attenuation behaviour can be described by the critical exponent zn = 1
(Figure 10).

In summary, near the normal-incommensurate CDW phase transition [54],
two dynamic regimes are defined: As temperature approaches TCDW, the relax-
ation time tF increases and governs the temperature behaviour of velocity and

Table 3. Dynamic behaviours, critical exponents μ, zn, relaxation times t0LK and t0F .
Materials

TbTe3 m = −0.026, zn = 1.36 t0LK = 2× 10−12 (s)
t0F ≈ 1× 10−11 (s)

ErTe3 m = −0.026, zn = 1.36 t0LK = 5× 10−11 (s)
t0F ≈ 1× 10−11 (s)

HoTe3 m = −0.026, zn = 1.36 t0LK = 2× 10−11 (s)
t0F ≈ 3× 10−11 (s)

Lu5Ir4Si10 m = 0.5, 0.2, zn ≈ 1 t0LK = 1.1× 10−11 (s)
t0F ≈ 1× 10−11 (s)
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attenuation. Below TCDW Landau-Khalatnikov (order parameter) relaxation
contributes to attenuation.

4. Conclusion

Properties of rare earth tritellurides RTe3 and Lu5Ir4Si10 compounds at the
CDW phase transition are briefly discussed in the framework of mean field

Figure 9. (a) Critical velocity contributions dV11/V11 of the C11 mode in ErTe3 (blue symbols)
and HoTe3 (red symbols) and C33 mode TbTe3 (black symbols). The dashed curves are calculated
curves with 3D XY model, dV11/V11 = 0.319− 0.342× t0.026 for ErTe3,
dV33/V33 = 0.12−−0.1336× t0.026 for TbTe3 and dV33/V33 = 0.326−0.355× t0.026 for
HoTe3. t is the reduced temperature t = (T − TCDW)/TCDW. (b) Critical attenuation (same
symbols). The dashed red curve is calculated using Equation (27) (3D XY model) with the relax-
ation time t0F = 1× 10−11 s, data taken from [26–28]. (Colour online)

Figure 10. (a) Critical velocity contributions dV11/V11 of the C11 mode in Lu5Ir4Si10. The dashed
red lines are calculated using dV11/V11 = 6× 10−4t−0.5 and dV11/V11 = 2× 10−4t−0.2. (b)
Critical attenuation, the dashed red line represents t−1 variation, t is the reduced temperature
t = |T − TC|/TC or t = |T − TH|TH, data taken from [34]. (Colour online)
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theory. Attenuation and longitudinal velocity changes near TCDW are briefly
reviewed. It is interesting to compare the results with and without the effects
of fluctuations. Similar features in the thermodynamic properties at the
CDW phase transition are found in the following compounds: The quasi-one
conductors TTF-TCNQ and K0.3MoO3, the transition metal dichalcogenide
2H-NbSe2 and the rare earth tritellurides TbTe3, ErTe3, HoTe3. It appears
that the amplitude of the specific heat jump at the CDW phase transition
increases linearly with increasing TCDW. The same dependence
DCP/Vm = ATCDW (A = 200 J K−2 m−3) is found. In the same manner, the
amplitude of the discontinuity of the velocity of the longitudinal elastic con-
stants increases with increasing TCDW is observed for the same materials as
DVii/Vii = BT2

CDW (i=1 and 3 and B = 4× 10−7 K−2). Such a quadratic
dependence is in agreement with the BCS theory (Allender et al. model) and
the Ehrenfest relationships. It results that the thermodynamic properties of
2H-NbSe2, TTF-TCNQ, K0.3MoO3, TbTe3, ErTe3 and HoTe3 have the same
behaviour and they follow approximately the classical mean field BCS type
behaviour. Nevertheless, this simple approach fails to describe adequaly the
specific heat and elastic stiffness properties of all CDW systems in particular
the transition metal dichalcogenides. Discrepencies are attributed to the
different contributions given by fluctuations and the amplitude mode at the
incommensurate CDW phase transition which are sample dependent. The
characteristic time governing the order parameter dynamics increases criticaly
toward the transition tLK = t0LK(1− T/TCDW)−1, a relaxation
time t0LK ≈ 1× 10−11 s is found for the rare earth tritelluride compounds
TbTe3, ErTe3 and HoTe3 and the intermetallic compound Lu5Ir4Si10. The tran-
sition which occurs in the compound Lu5Ir4Si10 is first order and can be
described by the Landau theory including a cubic term in the expansion of
the free energy.
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