PHYSICAL REVIEW A 100, 042314 (2019)

Deep reinforcement learning for quantum Szilard engine optimization

Vegard B. Sgrdal ©" and Joakim Bergli
Department of Physics, University of Oslo, 0316 Oslo, Norway

® (Received 9 April 2019; published 16 October 2019)

Machine learning techniques based on artificial neural networks have been successfully applied to solve many
problems in science. One of the most interesting domains of machine learning, reinforcement learning, has a
natural applicability for optimization problems in physics. In this paper, we use deep reinforcement learning and
chopped random basis optimization to solve an optimization problem based on the insertion of an off-center
barrier in a quantum Szilard engine. We show that by using designed protocols for the time dependence of the
barrier strength, we can achieve an equal splitting of the wave function (1/2 probability to find the particle on
either side of the barrier) even for an asymmetric Szilard engine in such a way that no information is lost when
measuring which side the particle is found. This implies that the asymmetric nonadiabatic Szilard engine can
operate with the same efficiency as the traditional Szilard engine with adiabatic insertion of a central barrier. We
compare the two optimization methods and demonstrate the advantage of reinforcement learning when it comes

to constructing robust and noise-resistant protocols.

DOI: 10.1103/PhysRevA.100.042314

I. INTRODUCTION

Machine learning is becoming an essential tool for data
analysis and optimization in a wide variety of scientific fields
from molecular [1] and medical sciences [2] to astronomy [3].
One of the most exiting developments in machine learning
comes from combining reinforcement learning [4] with deep
neural networks [5]. Reinforcement learning (RL) differs from
supervised and unsupervised learning and is based on letting
an agent learn how to behave in a desired way by taking
actions in an environment and observing the effect of the
action on the environment. In order to define the optimal
behavior of the agent, we give it feedback in the form of
a reward based on the effect of its previous action. If the
action changes the environment into a more desirable state,
we give it a positive reward, whereas if it had negative con-
sequences, we give it a negative reward. Recently, RL has en-
joyed increasing popularity in quantum physics and has been
used to explore the quantum speed limit [6,7], protect qubit
systems from noise [8], design new photonic experiments
[9], and many other applications [10-12]. For an excellent
review of the application of machine learning in physics, see
Ref. [13].

We use deep reinforcement learning (DRL), specifically
deep-Q learning (DQL) [5], and a deep deterministic policy
gradient (DDPG) [14] to solve an optimization problem based
on the barrier insertion of an asymmetric (off-center insertion)
quantum Szilard engine, which we will motivate it the follow-
ing paragraphs. The goal is to find barrier insertion protocols
that effectively achieve equal splitting of the wave function
of a single-particle box (SPB). We compare the results from
DRL with those obtained by using chopped random basis
optimization [15], a more traditional optimization algorithm.

*vegardbs @fys.uio.no

2469-9926/2019/100(4)/042314(9)

042314-1

The Szilard engine is a classic example of a information
processing system, which can convert one bit of Shannon in-
formation (obtained by a binary measurement) into an amount
kgT In 2 of useful work [16]. This is performed by inserting
a barrier in the center of a SPB, performing a measurement
to determine which side of the barrier the particle is found
(giving one bit of Shannon information), and then letting the
compartment the particle occupies isothermally expand into
the empty one resulting in a work extraction of kg7 In 2.
This work is not free, however, since the information ob-
tained has to be stored in memory, which, subsequently, has
to be deleted at an energy cost of kg7 In 2 according to
Landauer’s principle [17]. For a detailed discussion on the re-
lationship between Szilard’s engine and Landauer’s principle,
see Ref. [18]. Both work extractions from a Szilard engine
and Landauer’s principle have recently been experimentally
confirmed [19-22].

For the quantum version of the Szilard engine [23], there
are some subtle differences in the entropy flow during inser-
tion, expansion, and removal of the barrier [24]. Moreover, the
position of the particle is now described by a quantum wave
function, which is divided into two parts when inserting the
barrier. When adiabatically inserting a barrier in the center
of a quantum SPB in its ground state, the wave function is
split in half in such a way that each half becomes a new
ground state in each compartment when the barrier strength
goes to infinity. The probability to find the particle on either
side of the barrier after insertion becomes 1/2. However,
as long as there is an asymmetry in the insertion of the
barrier, i.e., it is not put exactly in the center, the adiabatic
theorem guarantees that the particle will be found in the larger
compartment [25]. Since the initial state is the ground state
and the adiabatic theorem implies the time evolved state will
stay in its instantaneous eigenstate, the particle always ends
up in the global ground state. The global ground state is found
in the larger compartment since the energy is proportional to

©2019 American Physical Society

https://orcid.org/0000-0002-5756-6369
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.042314&domain=pdf&date_stamp=2019-10-16
https://doi.org/10.1103/PhysRevA.100.042314

VEGARD B. SORDAL AND JOAKIM BERGLI

PHYSICAL REVIEW A 100, 042314 (2019)

a(t)

1
1
1
n=3 1
1
1
o= s 1
,¢’ ~~~\ 1
l" \\ I
n=2 L 1

/”’_—‘:?\\\ /"

- 3 LN
- SeamtN

” ~
n=1 1
1

T T T » X
-L/2 o d L/2

FIG. 1. Illustration of a single-particle box with total width L.
The eigenfunctions and eigenenergies are shown for the initial state
at)=0.

LE&), where Lg(z) is the width of the compartment on the
right(left) side of the barrier.

If we want to achieve equal probability on both sides of
the barrier for asymmetric insertion, we have to insert the
barrier nonadiabatically in such a way that we excite higher
eigenstates. This will, in general, decrease the efficiency of
the quantum Szilard engine since the measurement only deter-
mines which side the particle is found, not its exact eigenstate.
However, there is one special way of obtaining exact splitting
of the wave function without losing any information in the
measurement for the asymmetric Szilard engine [26]: If we
insert the barrier in such a way that the total wave function
is a superposition of only the first and second eigenstates at
the time of measurement, i.e., |¥) = (|¥1) + |¥2))/v/2, the
which-side measurement does not result in any information
loss since the second eigenstate becomes the ground state
of the smaller compartment. When one now measures which
compartment the particle is in, one is certain that it is in the
ground state of the respective compartment.

II. SINGLE-PARTICLE BOX

The SPB that constitutes a quantum-mechanical Szilard en-
gine is defined by the potential V (x) = O forx € [-L/2, L/2],
where L is the total width of the box and V (x) = oo elsewhere.
The barrier is a é-function potential inserted at x =d > 0.
An illustration of the SPB is shown in Fig. 1 along with its
three first eigenfunctions and eigenenergies before the barrier
is inserted. If d = 0O, the box is split symmetrically, i.e., the
width of the left and right compartments is equal. How-
ever, for d > 0, the width of the left compartment becomes
L, = L/2 + d, whereas the width of the right compartment
becomes Lz = L/2 — d. The time-dependent Hamiltonian of
the insertion procedure is given by

2 92

Hi)= ———
@ 2m 0x2

+a(t)s(x —d), (1)

where «/(?) is the strength of the barrier at time ¢ and m is
the mass of the particle. For the rest of this article, we set
h = m = 1. The total wave-function |\W(¢)) can be expressed
as a linear combination of the instantaneous eigenfunctions,

() :;cn(t)m(t» G0 g, = —% /0 E (),
@)

and the goal is to construct a protocol where E,(t)’s are
the instantaneous eigenenergies when the barrier strength
is a(t), |¥,(¢))’s are the instantaneous eigenfunctions, and
cn(t)’s are complex coefficients. The initial state is, therefore,
given by |c;(0)|?> = 1, and the goal is to construct a proto-
col a(t), which brings us to a final state where |c;(T)|? =
lea(T> =1 /2, where T is the duration of the protocol. More
details on how the instantaneous eigenstates are calculated
and how the time evolution of the total wave function is
numerically solved is given in Ref. [26].

We see now that the method of only exciting the first two
eigenstates also results in the minimum work cost of inserting
the barrier. The work in an isolated system evolving from time
t =0tot =T is given by

W =AH =Y E(De(T) = ExO)leiOF. (3)

n=1

If we require that the barrier strength (7)) att = T to be high
enough to prevent any leakage between the compartments,
then the energy eigenstates are the same for all protocols
since they quickly converge to a fixed value as a(T) — oo.
Therefore, the work is determined only by the set {¢,(T)},
and since the energy is strictly increasing as a function of n,
the minimum work required for an equal distribution is when
le1(T)? = lex(T)I> = 1/2.

If we want to get energy from a heat bath in this system
as is typically performed for Szilard engines, the coupling
between the system and the heat bath will result in a thermal
density matrix,

e PEAT)

pp(T) = —Zn S PET)

“4)

where § is the inverse temperature of the heat bath. This
coupling is followed by an isothermal expansion of the barrier,
extracting heat from the environment to perform work. If the
isolated system is excited to higher states before coupling,
then the energy transferred from the heat bath to the system
upon coupling would be lower than the one transferred if only
the two lowest eigenstates were excited (because the energy of
the isolated system in the former case is closer to the energy
of the thermal density matrix than for the latter case). This
results in an overall decrease in the per cycle heat-to-energy
conversion.

Our goal is to split the wave function of a single-particle
box in the ground state by inserting a barrier off center
in such a way that the first and second eigenstates have
equal occupation probability of 1/2 and the probabilities to
find the particle in all higher states are as close to zero as
possible. However, finding a protocol for the barrier insertion
which will achieve this goal is nontrivial since it will have

042314-2

DEEP REINFORCEMENT LEARNING FOR QUANTUM ...

PHYSICAL REVIEW A 100, 042314 (2019)

(a):d =0.01 (b): d = 0.02
200 200
%150 EISO
w— “
o o
» 100 © 100
c ‘e
2 2
5 50 5 50
0
0 2 4
time (s)
(c):d=0.01

A~

lea(B)]?

0.00] —efimim e e | J— 0.00] =i ————

time (s) time (s)

FIG. 2. Results from the CRAB optimization for d = 0.01 and
d =0.02. In (a) and (b), we show the protocols «(z), whereas in
(c) and (d), we show the time evolution of |c,(¢)|>. We see that the
protocol in (b) gives negligible excitations to states n > 2 throughout
its duration. However, the protocol in (a) excites the third eigenstate
during the first discontinuity in «(¢) right before ¢ = 3, but this
excitation is depleted during the second discontinuity around ¢ = 4.

to take advantage of complicated interference between the
time-dependent eigenstates.

III. CHOPPED RANDOM BASIS OPTIMIZATION

We use chopped random-basis (CRAB) optimization [15]
to find protocols «(¢) that split the wave function in two equal
halves for asymmetric barrier insertion in a quantum box. In
CRAB optimization, we expand the protocol in a complete
basis (the Fourier series in our case), in the following way:

N.
alt) = ao(t)|:l + A1) Y A, cos(wyt) + B, sin(a),,t)i|. 5)

n=1

Here, oo(?) is an initial guess for the optimal protocol, A(t)
is a regularization function used to implement boundary con-
ditions, and {A,,, B,, w,} is a set of Fourier coefficients. We
set the cutoff to N, = 10, meaning we have a total of 15
free parameters. The Fourier coefficients are optimized to
minimize the cost function,

2
C({An, B, 0a)) = Y _llea(T)I* = 0.57. (6)

n=1

We use a linear function for ¢ () and fix the boundary condi-
tions to be g (0) = 0 and ao(T') = 200E,L [where Ey = %/2
is the ground state at «(0) = 0] and choose A(t) = sin(zt/T).
To minimize Eq. (6), one can use a gradient-free method,
such as the Nelder-Mead [27] or the Powell method [28].
Using the Nelder-Mead method, we are able to almost exactly
split the wave function in half, and results for d = 0.01 and
d = 0.02 are shown in Fig. 2. In these examples, we obtained
lc1(T)]? = 0.4986, |co(T)|> = 0.4979, and D open len(T)] =
1073 for d = 0.01, whereas, for d = 0.02, we got |c;(T)|* =
0.5001, |c2(T))? = 0.4999, and > o lea(T)]? ~ 1075, In
Figs. 2(a) and 2(b), we show example protocols for d = 0.01

1.00 (a) protocol designed for d = 0.01
o~ 0.75 n=1
Eo0.50 — n=2
L —_—n> 2
o =
0.00 0.00 0.02 0.04 0.06 0.08 0.10
1.00 (b) protocol designed for d = 0.02
o 075 N
£ o050 — n=2
L — N> 2
0.25
0.00% 0.02 0.06
unlts of 1/L)

FIG. 3. Plot showing how the protocols designed for two specific
asymmetries perform on other asymmetries. In (a), we show the
results for the protocol designed for d = 0.01, whereas, in (b), we
show the one designed for d = 0.02. The light blue and the blue lines
show the occupation at t+ = T for the first and second eigenstates,
respectively, whereas the purple line shows the occupation of all
eigenstates higher than the second, i.e., the unwanted excitations.
The black dashed lines show the target |c,(T)|> = 0.5, and the red
crosses shows the asymmetry trained on.

and d = 0.02, respectively, whereas in Figs. 2(c) and 2(d), we
show the time evolution of the probability to be in a given
eigenstate |c,(t)|>.

The protocols obtained by CRAB are designed to split
the wave function in two for a given asymmetry. They work
extremely well for the asymmetry they were designed for.
However, the protocols generalize poorly to other asymme-
tries as shown in Fig. 3. There we plot |c,(T')|? as a function of
the asymmetry d using the protocol designed ford = 0.01 and
d = 0.02. We see that the performance of a protocol designed
for a specific asymmetry dramatically reduces if it is applied
to single-particle boxes of different asymmetries. An interest-
ing feature is seen in Fig. 3(b) where the protocol designed for
d = 0.02 achieves exact splitting for asymmetries other than
the one that was used for training. However, even this protocol
has bad performance in the regions between these points of
exact splitting, so it would not be useful unless one knows the
exact asymmetry of the single-particle box.

Real systems are noisy, and one may not know the exact
asymmetry of the box, either due to a fluctuating Hamiltonian
or due to limits of experimental precision. We, therefore, want
to find protocols that perform well on a small interval of
asymmetries. This can be performed by changing the cost
function to an average of Eq. (6) for a set of asymmetries.
In Fig. 4, we show example results obtained when using
CRAB on three, five, and ten different asymmetries. The red
crosses indicates the set of asymmetries that was trained on.
At three asymmetries, Figs. 4(a) and 4(b), we obtain decent
results, however, there are gaps in the areas between the
specific points where we trained where the protocol performs
poorly. When training on five asymmetries, Figs. 4(b) and
4(c), the protocol still performs better in the target area than
the surroundings, however, the difference between |c;(T)|?
and |co(T))? is quite large, and there are a lot of higher-order

042314-3

VEGARD B. SORDAL AND JOAKIM BERGLI

PHYSICAL REVIEW A 100, 042314 (2019)

_ (@) 1.00 (b)
=2 — AL
41000 o 07512070
; E 050 AW
£ 500 g
E 0.25
5 o
0 3 4 0-0% 00 0.05 0.10
time (s) d (units of 1/L)
(c)
5400
w
G
© 200
=
=]
5 0
0 2 a 0-0% 00 0.05 0.10
time (s) d (units of 1/L)
(e) (f)
1.00
= 400 n-1
S o 075 —n=2
5 E _A n>
» 200 S o050
= [$
El ~0.25 WAA/WW
[} 0 I
0 2 4 0-0%.00 0.05 0.10
time (s) d (units of 1/L)

FIG. 4. Example protocols and their final distribution of |c,(T)|?
for a range of asymmetries. (a) and (b) show the results when
training on three asymmetries, (c) and (d) show the same for five
asymmetries, whereas (e) and (f) are trained on ten asymmetries. The
specific asymmetries trained on is indicated by the red crosses. The
training time was 11 h (a) and (b), 13 h (¢) and (d), and 38 h (e) and
(f). These protocols were obtained using o(7") = 400EyL, and all
other parameters are the same as the single asymmetry case.

excitations. The worst protocol was obtained when training
on ten asymmetries, shown in Figs. 4(e) and 4(f). The CRAB
algorithm failed to converge to a good result when the number
of asymmetries increased. This is most likely because the
cost function becomes rugged and filled with local minima.
CRARB is just one of many optimization methods that could be
used to solve our problem. A set of recent exciting methods
that has been used in physics before, but could become
more widespread in the future, comes from deep learning.
Specifically, deep reinforcement learning seems like a good
candidate for optimization problems, so, in the following
sections, we will introduce some key algorithms and apply
them to our problem.

IV. DEEP QO LEARNING

We now give a short review of the DQL algorithm intro-
duced in Ref. [5]. In the next section, we will show how this
general algorithm is adapted to our problem. A schematic of
the basic reinforcement learning protocol is shown in Fig. 5.
At time ¢, the environment is in a given state s,. The agent
performs an action @, which induces a state change in the
environment from s, to s, . The agent then receives an obser-
vation of the new state of the environment s, ;. After taking
an action, the agent receives a reward r, = r(s;, a;, s;+1). The
reward function r(s;, a;, s;+1) is designed by us, according to
what goal we want the agent to achieve.

re
(AGENT)
{3}‘ m(s.a) ENVIRONMENT
. '
iﬁ i — a St = Swn
) \\.// | rt
DNN
N\ J
S, ! Sent

FIG. 5. Schematic showing the basic setup of deep Q learning.
The current state of the system s, is fed as input nodes into a deep
neural network (DNN). The output nodes are the set of all possible
actions { a }, and their values are the estimated Q value for the given
state-action pair. The policy m (s, a) is given by the action node
with the highest output value or by a random action if the agent
is exploring. The action determined by the policy is performed in
the environment, inducing a state change from s, — s,4. Associated
with this state change, a reward r; is given, which is used to determine
how good the given action was in this state. This reward is fed back
into the DNN and used to update its weights according to Eq. (10).
Schematic adapted from Ref. [29].

The behavior of the agent is determined by its policy
7 (a|s;), which is the probability of taking the action a,
in given the observation s,. If the agent is in state s,, the
Q function (quality function) Q,(s;, a;) gives the expected
cumulative reward given that the action a, is performed and
the policy 7 is followed for all proceeding states,

O(st,ar) = Ey, \[ri + yres1 + ¥2rign + -
= Es,H[rt + v OSit1, arr)ISss, ar, . (N

Here, y < 1 is a discount parameter, which determines how
much the agent values the immediate reward compared to the
future reward. If y < 1, the agent will value the future reward
less than the immediate reward, which is useful for learning
in stochastic environments where the future is more uncertain.
The optimal Q-function Q% (s;, a,) is the maximum expected
cumulative reward obtained by taking the action a, in state s,
and then acting optimally thereafter, and it is shown to obey
the Bellman optimality equation [4],

Q;(Sr, a) = Es,ﬂ [rt + y max Q;kr(st+l, a1)lss, az]' ()
Ar+1

|S[,a[,7'[]

If we have Q% (s, a) for all possible state-action pairs, it is
clear that we can find the optimal policy m* by choosing
a, = arg max, Q% (s;, a’), i.e., following the policy:

7" (a;ls;) = arg maxQy (s;, a). €))

The key idea introduced in Ref. [5], is to estimate the optimal
O function using a neural network QX (s, a) > Q% (s,a,0),
where 6 is the weights and biases of the neural network.
This neural network is called a deep-Q network (DQN) and is
updated by performing gradient ascent on the mean-squared
error of the current predicted Q7 (s, a, 6), whereas using the
Bellman equation as the target. The loss function for the DQN

042314-4

DEEP REINFORCEMENT LEARNING FOR QUANTUM ...

PHYSICAL REVIEW A 100, 042314 (2019)

is, therefore,

L) = E,,, {[Q% (51, ar, 0) — v, 1P}, (10)

where
Vi =r,+yr21aXQf,(st+1,at+1,9). (11)
t+1

To create the neural network, we used TENSORFLOW’s imple-
mentation of the KERAS API [30,31] with Adam [32] as the
optimizer. The network consists of three hidden layers with
24, 48, and 24 neurons, respectively, as well as 2 input neurons
and 20 output neurons. When the network is initialized, its
predictions for the optimal Q7 values are, of course, totally
wrong. So, if we always chose the actions that maximize the
current predicted QF values, the agent would not learn any-
thing. We need to let the agent explore the state-action space
by randomly performing actions. A typical exploration policy
is the e-greedy policy. The agent chooses random actions with
probability € or the ones with the highest QF value (greedily)
with probability 1 — €. As time goes and the agent explores
more of the environment, € is decreased so that it focuses
more on the areas of the state-action space with higher Q%
values by taking deterministic actions. Typically, we start by
taking completely random actions € = 1 and let € converge
to some finite number € ~ 0.05 so that there is always some
exploration going on. As seen in Eq. (10), a single update of
the network weights requires the following input: The current
state s;, the action chosen «a,, the immediate reward r;, and
the next state s, ;. We call this tuple e, = (s;, a;, 11, 5;+1) that
the network trains on an experience. Instead of training on
consecutive experiences, we store them all in memory My =
{eo, e1, ..., ey} and then train on randomly drawn batches of
samples from the memory. The memory has a finite capacity,
and new experiences replace older ones when the memory
is full. There are three main advantages of training on the
memory: It is data efficient since a single experience can be
drawn many times. Only training on consecutive experiences
is inefficient since the network tends to forget previous ex-
periences by overwriting them with new experiences. The
time correlation of consecutive experiences means that the
network update due to the current experience determines what
the next experience will be so training can be dominated

J

O’

r(t): _101

100 exp (= Y7 M)’

n=1 o

where ¢ determines how sharp we want the reward distribu-
tion to be. We use a Gaussian function instead of the quadratic
one we used for CRAB such that the terminal state reward is
always positive. This is performed because it makes it easier
to infer the agents behavior when looking at the reward as
a function of episode number. To motivate the agent to be
precise when splitting the wave function, we should give it
a very high reward when it gets close to exact splitting, thus,
we include a 0 < 1 to make the distribution sharper. If it gets
almost the same reward for a worse result, which is easier to
obtain, it will prefer the easier option.

by experiences from a certain area in the state-action space.
Finally, we see that, in Eq. (10), the current weights of the
network determine both the target Q7 value and the predicted
Q7 value from the Bellman equation. Thus, every network
update changes the target Q7 value that we are trying to reach
and makes it hard for the network weights to converge. A
simple way to circumvent this problem is to use two neural
networks, one for the target Q% -value (97), and one for the
current QF-value (0). The target network is softly updated
during training according to 6~ < 67 (1 — v) 4+ 07, where
T is a hyperparameter that determines how close the two
networks are in the network parameter space.

V. DQL RESULTS

For our system, we defined the state to be a tuple of the
strength of the § barrier and the time ¢, i.e., S = {«(¢), t}. The
available actions are a set of & (), given by

A={af(t)=+10x2" forn=1,2,...,10}.

The initial state is § = {«(t) =0, t = 0}, and the goal is
to reach a state where |co|?> = |c;|> = 1/2 at the end of the
protocol + = T. A sequence of selected actions from time
t =0tot =T defines a protocol «(¢). The number of times
the agent chooses an action per protocol is given by N;, and
the time step is, therefore, dt = T /N,. The environment that
the agent acts in is the quantum-mechanical SPB with initial
states |c;|> = 1 and |c,~|?> = 0 and time evolution given by
the Schrodinger equation i0; [y (¢)) = H(t) |y (¢)), which we
solve as in Ref. [26]. The sequential process for one episode
is then:

(1) The initial state is so: (g = 0, t = 0).

(2) The agent chooses an action based on sy, e.g., ap =
af.
’ (3) The next state is then s;: (g + &5 dt, 1 + di).
(4) Repeat (2) — (3) for sy, sp,...untilt =T.
(5) Solve the Schrodinger equation for the given protocol
(set of all states { sy, t, }), and calculate reward. Repeat from
(1) until a maximum number of episodes is reached.

The reward function we used is defined by

if t < T and o € [0, amax],
if t < T and o ¢ [0, amax], (12)

ift=T,

(

If the agent chooses actions such that «(¢) < 0, we give
it a punishment of —10 and set «(#) = 0, and for actions
that would give a(f) > omax, We punish and set a(f) = max-
We do this to keep the state space bounded. The space of
possible protocols grows exponentially with dt~!, so it is
impractical to set df so small that we get approximately
continuous «(¢). The accuracy of our numerical solution of
the quantum time evolution decreases if we have discontin-
uous &(t), so, to circumvent this problem, we use a cubic
spline to interpolate the final protocol before calculating the
reward.

042314-5

VEGARD B. SORDAL AND JOAKIM BERGLI

PHYSICAL REVIEW A 100, 042314 (2019)

(@)

750
3
500
(o)
2
Z 250
2
[+
0
0 i 3 3 4 5
time (s)
(b)
1.0 —n=1
n=2
~ — n=3
~ =+ n=4
\EO.S
S}
0.0 \\\\\\\\\\\\\\\\\\\\\\\\\\\\
2 3 3 5
time (s)
1.00 (c)
n=1
— =2
L 075 /\ /\ — -2
E o050 /
5
0.25
0.005 50 0.02 0.04 0.06 0.08 0.10

d (units of 1/L)

FIG. 6. Results from DQL when training on a single asymmetry
€ =0.02. In (a), we show the protocol «(t), whereas in (b), we
show the time evolution of |c,(t)|*> for the asymmetry we trained
on. Similar to the protocol in Fig. 2(a), there is a good amount
of excitations for the third eigenstate in the very beginning of the
protocol, which is then depleted around r = 1 s. In (c), we show
how the protocol generalizes to other asymmetries by plotting the
distribution |¢,(T)|> at t = T for asymmetries in the range of d €
[0.01,0.1]. The parameters of this protocol were 7' =5s, N, =
10, omax = 800EyL, and o = 0.05.

In Fig. 6, we show an example protocol learned by
the DQL agent and the corresponding time evolution of
lca(¢)]*> when training on a single asymmetry (e = 0.02)
for 10 000 episodes. The final distribution was |c;(T)|* =
0.4996, |c,(T)|> = 0.4935, and with higher excitations,
>, leal? 2 1072, The results, when training on a single
asymmetry, tended to be worse for DQL than for direct CRAB
optimization. There are many ways to improve the results
obtained by DQL; we can add actions to or change the action
space, we can train for a longer time or increase the number
of actions per episode N;. Alternatively, one could implement
algorithms similar to DQL that can perform actions in a
continuous action space, such as the DDPG [14]. However,
most of these changes would also increase the necessary
training time.

One of the main benefits of DQL is that it is a model-free
algorithm, so the task of generalizing a protocol for a range
of asymmetries is easily achieved. One only has to let the
agent train on random samples of the set of asymmetries one
wants the protocol to be optimized to, which is essentially
the same as training with a noisy Hamiltonian [7,8]. Since
the agent tries to maximize the expected cumulative reward,
this added stochasticity is no hindrance. How much the agent
values a given state-action pair is averaged over the random
samples from the memory, which is proportionally filled with
the number of asymmetries we train on.

(a)

3
o
w400
—
]
2
g 200
s o/
0
0 1 2 3 4 5
time (s)
(b)
0.6 n=1
~ —_—n=2 ! f
E *|l=A>2
[-
£0.2 \
0.0
0.00 0.02 0.04 0.06 0.08 0.10
d (1/L)

FIG. 7. Results from DQL when training on ten different asym-
metries in the range of d € [0.04, 0.06]. In (a), we show the protocol
obtained, whereas in (b), we show |c,(T)|* all asymmetries up to
d = 0.1 where the red bar indicates the range of asymmetries we
trained on. When compared to Fig. 3, we see that the protocol
performs much better overall than the ones designed for one specific
asymmetry, particularly, in the range we trained on. The parame-
ters of this protocol were T =5's, N; = 20, omax = 800EyL, and
o = 0.05.

As an example, say one could determine the asymmetry
with a given accuracy d = 0.05 £ 0.01. An example protocol
that was obtained when training on multiple asymmetries (ten
equally spaced samples in the range of d € [0.04, 0.06]) is
shown in Fig. 7. As seen in Fig. 7(b), this protocol performs
better on the full range of asymmetries than the ones designed
for a single asymmetry, shown in Fig. 3. The excitation to
states higher than the two first eigenstates is largest for small
asymmetries. This is due to the fact that, when d — 0, the
wall is inserted close to the central node of the second eigen-
state and the central antinode of the third eigenstate as shown
in Fig. 1. Therefore, excitations to the second eigenstate
become less likely, whereas the opposite is true for excitations
to the third eigenstate. Since this is an intrinsic property of the
system, it is impossible to find protocols that avoid excitations
for d — 0. For d = 0, the ground state of the left and right
compartments constitute a doubly degenerate global ground
state, and to achieve an equal splitting of the wave function,
one has to insert the barrier adiabatically [26].

From Figs. 7 and 8, we can infer that the way the agent
created a robust protocol (for this example) was to choose
a large initial value of the action &(¢) (from O to 1 s) in
such a way that the first and second eigenstates were quickly
almost evenly occupied. At later times, the protocol slightly
modifies the occupation in such a way that the average reward
of all asymmetries trained on increases by a small amount.
When training on multiple asymmetries, the type of protocol
shown in Fig. 6 no longer works because it takes advantage
of the exact timing of complicated interference between the
eigenstates, which strongly depends on the exact asymmetry.
It is unlikely that there exists special protocols that simultane-
ously achieve this for many asymmetries, therefore, the most
important feature of the robust protocols is the early and rapid
increase to a high value of «(#). If they exist, it is reasonable

042314-6

DEEP REINFORCEMENT LEARNING FOR QUANTUM ...

PHYSICAL REVIEW A 100, 042314 (2019)

(@)

0.00 0.02 0.04 0.06 0.08 0.10
d (1/L)

(b)

0.40

1 2 3 4 5
time (s)

FIG. 8. Plot of the (a) reward as a function of asymmetry d and
the time evolution of (b) |c,(¢)|? for d = 0.548. These results are
obtained by applying the protocol from Fig. 7. We see that the reward
is maximized around the training asymmetries.

to expect that they can only be found for small time steps,
however, even when decreasing the time step down to dt =
0.01 using T = 1 sand N; = 100, the obtained protocols were
qualitatively similar to the ones shown.

In Fig. 9, we see the total cumulative reward received
per episode in a scatter plot as well as a running average.
We see that, in the early episodes, where the agent mostly
performs random actions, there are many episodes with a
negative cumulative reward. This is because there is an equal
probability that the agent chooses negative and positive &’s,
and since the initial state is a(t = 0) = 0, there is a high

100

5 50
—

©

2

o 0
Q

2

2

& 50
3

€

3

© _100
-150

0 5000 10000 15000 20000 25000 30000 35000
Episode

FIG. 9. Scatter plot of the reward received per episode when
training on multiple asymmetries, shown in blue dots and a running
average shown in red. The probability to take random actions is
gradually reduced with the number of episodes, leading to a final
protocol which the agent determines to be the best.

probability that the agent chooses actions which give a(t) <
0, resulting in a punishment of —10 every time. In this early
stage, the agent explores and learns about its environment. As
the probability to take random actions decreases (according to
the e-greedy protocol) with each episode, the agent takes more
deterministic actions based on its experience, and the reward
per episode increases steadily. The stochasticity observed in
the rewards for final episodes is due to a finite final exploration
rate € = 0.05. We obtain the final protocol after training by
setting € =0 and let the agent act deterministically. The
efficiency of the protocol obtained by training on a range
of asymmetries can be increased by implementing the same
changes as for the one designed for a single asymmetry.

VI. DEEP DETERMINISTIC POLICY GRADIENT

Our set of possible actions for the DQL algorithm is
somewhat arbitrarily chosen. For our specific control problem,
there are infinitely many protocols that can achieve our goal,
so the exact set chosen is not critically important. However,
the performance of the algorithm depends on this choice, and
the optimal protocols we find can always be defined by some
subset of the total action space. That is, not all actions are used
for the optimal protocol, so we could retroactively reduce the
action space after learning which actions were needed. For
many control problems in physics, it is more natural to let
the action values be drawn from a continuous set on some
interval A € [amin, @max]- For DQL, this is not possible since
the optimal policy 7*(a;|s;) comes from taking the maximum
argument of a finite-dimensional Q*(s;, a;).

When the action space is continuous, the optimal Q-
function Q*(s, a) is assumed to be differentiable with respect
to the action a. In the deep deterministic policy gradient
[14], the goal is to find a deterministic policy w(s), which
gives us the optimal action to take for any state a* = u(s).
This deterministic policy is approximated by another neural
network wu(s) ~ wu(s, ¢), where ¢’s are the parameters of the
network. The Q function is as in DQL also approximated
by a neural network, and the essence of introducing the
deterministic policy is to replace the largest Q value for a
state-action pair in the following way:

arg max 0 (si,d,0) = OQ%[s41, (si41, $), 01 (13)

The Q network is updated in the same way as in DQL by using
the Bellman equation, but instead of Eq. (11), the target for the
loss function now becomes

yi =10+ yQ[sit1, ulsiv1, @), 0] (14)

As for the policy network, it was shown in Ref. [33] that its
weights can be updated in proportion to the gradient of the O
function,

D1 = Pk + AEsep{VpQls, (s, ¢), 01}, 5)

where A is the learning rate, which determines the step size
of the gradient ascent. Since the gradient will, in general,
move the weights in different directions for different states,
an average over a batch of experiences is taken. By applying
the chain rule to Eq. (15), we can decompose it into a product
of the gradient of the policy with respect to its network weight,

042314-7

VEGARD B. SORDAL AND JOAKIM BERGLI

PHYSICAL REVIEW A 100, 042314 (2019)

(a)

=
o
t‘j 200
o
]
‘= 100
2
[S]
0
0 1 2 3 4 5
time (s)
(b)

0.6 n=1
~ — N =2 - -
g 0.4 —n> 2
s /
Y02 \

0.0

0.00 0.02 0.04 0.06 0.08 0.10
d (1/L)

FIG. 10. Results from DDPG when training on ten different
asymmetries in the range of d € [0.04, 0.06]. In (a), we show the
protocol itself, whereas in (b), we show how the protocol performs
on a range of asymmetries d € [0,0.1]. The red bar marks the
range we trained on. The parameters of this protocol were T =
5s, N, =20, opa = 800EyL, and o = 0.05, and we trained for
20 000 episodes.

and the gradient of the Q function with respect to the actions,

V(PQ*[Sv ,bL(S, ¢)7 9] = V¢[/L(S, ¢)VL1Q*(Sa a? ¢)|a=u(s,¢)~
(16)
Exploration in DDPG is driven by adding noise to the policy,
sampled from some distribution N, suited to the environment,
which is annealed over time,

W (s;) = u(se, @) + Ni. (17)

We use a Gaussian white-noise process and annealed its stan-
dard deviation from oy = 0.3 to oy = 10~* over the course
of the training. DPPG is called an actor-critic model, and
the sense is that the policy is an actor, taking actions in an
environment, and the Q function acts as a critic, determining
how good the actions where and feeding the result back to the
actor.

For the DPPG algorithm, we used an adapted implementa-
tion from Keras-RL [34], which includes the same modifica-
tions we used for DQL; i.e., experience replay and different
networks for the target and current Q function and policy.
The policy network takes as input the same state tuple as for
DQL S = {«(¢), t }, which is connected to three hidden layers
with the same architecture as DQL; 24, 48, and 24 neurons,
respectively, and outputs a single value, the action «(¢). The
QO-function network takes as input the action value suggested
by the policy as well as the state S = {«(t),t} again con-
nected to three hidden layers with the same architecture as
DQL and outputs a value which is its estimation of the optimal
Q value of the state-action pair. The output actions forming the
policy network are clipped at ()| < 1000EyL/s, and we use
the same reward function as for DQL. In Fig. 10(a), we show
a protocol obtained from DDPG when training on ten asym-
metries in the range of d € [0.04, 0.06], and in Fig. 10(b),
the performance of the protocol on a range of asymmetries
from d € [0, 0.1]. As expected, the best results are obtained
for the range of asymmetries we trained on, indicated by a
red bar. A rigorous comparison between DQL and DPPG is

difficult, partly due to the large amount of hyperparameter
tweaking needed to optimize each algorithm but largely due to
the arbitrary choice of discrete action values for DQL: For our
example problem, there is no natural set of available actions to
choose. As mentioned earlier, the performance of DQL for our
problem depends on the set of actions chosen, and therefore, a
fair comparison of the algorithms is complicated. The choice
between discrete and continuous-action algorithms has to be
taken based on the specific problem one wants to solve. For
our SPB problem, there are infinitely many good solutions,
and since we interpolate the protocol at the end of each
episode, both DQL and DPPG are well suited.

We used a 3.40-GHz CPU, and the training time for the
most resource-intensive computation (the protocol in Fig. 7)
was about 48 h, so increased training time is something that
more advanced computation systems can handle. The most
computationally intensive part of the training by a large mar-
gin was solving the Schrodinger equation after each episode.
As for the hyperparameters of the neural networks, we used a
learning rate A = 1073, target network update every 7 = 1073
time steps, and a replay memory size between 10% and 50%
of the total number of experiences. The e-greedy exploration
policy was a linear decrease from ¢ = 1 to ¢ = 0.05.

VII. DISCUSSION AND SUMMARY

We have used CRAB optimization and deep reinforcement
learning to construct protocols «(¢) for the time-dependent
strength of a barrier inserted asymmetrically in a single-
particle box in such a way that the wave function is split in
two equal halves. These results imply that the asymmetric
quantum Szilard engine can reach the same efficiency in
information-to-work conversion as the symmetric one. Using
CRAB optimization, the protocols we obtain perform very
well for the specific asymmetry we optimize for. However, the
algorithm generalizes poorly when simultaneously training
on a set of asymmetries to simulate a noisy environment.
Although more time consuming than CRAB optimization, we
can also use DRL to find high performing protocols when
training on single asymmetries. One of the biggest strengths
of reinforcement learning-based techniques is the possibility
to perform robust and noise-resistant optimization. When
training on a range of different asymmetries simultaneously,
DRL can be used to find the protocols that perform best on
the average of all the asymmetries sampled. Both DQL and
DDPG were able to find good protocols for our example
SPB problem, but, in general, the choice between discrete
and continuous-action algorithms has to be made on the basis
of what specific problem one wants to solve. The advantage
of using reinforcement learning for quantum control is mul-
tifaceted: Having model-free algorithms makes it simple to
change the optimization criterion to make the agent solve dif-
ferent problems within the same environment, one only has to
change the reward function to suit the new goal. Furthermore,
since the agent is not tailored to any specific environment, it
can easily be adopted to work in entirely different systems
(e.g., we can use the agents constructed here to perform state
transfer in qubit systems [6]). Finally, the stochastic nature of
the agents learning procedure is advantageous when one wants
to perform robust optimization which can perform well with

042314-8

DEEP REINFORCEMENT LEARNING FOR QUANTUM ...

PHYSICAL REVIEW A 100, 042314 (2019)

noise. These points all suggest that reinforcement learning can
become a useful tool in physics.

It is important to make clear that we only compared DQL
and DDPG to a single other algorithm and that other tradi-
tional algorithms may perform as well or even better than
DRL. Particle swarm optimization and Monte Carlo methods
are some possible candidates. For future work, it is important

to test and compare these algorithms taking into account data
requirement, computational effort, time, and ease of use.

ACKNOWLEDGMENT

We thank Y. M. Galperin for reading the paper and making
valuable comments.

[1] K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A.
Walsh, Machine learning for molecular and materials science,
Nature (London) 559, 547 (2018).

[2] D. Shen, G. Wu, and H.-II Suk, Deep learning in medical image
analysis, Annu. Rev. Biomed. Eng. 19, 221 (2017).

[3] J. R. Primack, A. Dekel, D. C. Koo, S. Lapiner, D. Ceverino,
R. C. Simons, G. F. Snyder, M. Bernardi, Z. Chen, H.
Dominguez-Sanchez et al., Deep learning identifies high-z
galaxies in a central blue nugget phase in a characteristic mass
range, Astrophys. J. 858, 114 (2018).

[4] R. Bellman, A markovian decision process, J. Math. Mech. 6,
679 (1957).

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G.
Ostrovski et al., Human-level control through deep reinforce-
ment learning, Nature (London) 518, 529 (2015).

[6] M. Bukov, A. G. R. Day, D. Sels, P. Weinberg, A. Polkovnikov,
and P. Mehta, Reinforcement Learning in Different Phases of
Quantum Control, Phys. Rev. X 8, 031086 (2018).

[7] X.-M. Zhang, Z.-W. Cui, X. Wang, and M.-H. Yung, Automatic
spin-chain learning to explore the quantum speed limit, Phys.
Rev. A 97, 052333 (2018).

[8] T. Fosel, P. Tighineanu, T. Weiss, and F. Marquardt, Reinforce-
ment Learning with Neural Networks for Quantum Feedback,
Phys. Rev. X 8, 031084 (2018).

[9] A. A. Melnikov, H. P. Nautrup, M. Krenn, V. Dunjko, M.
Tiersch, A. Zeilinger, and H. J. Briegel, Active learning ma-
chine learns to create new quantum experiments, Proc. Natl.
Acad. Sci. USA 115, 1221 (2018).

[10] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, Quantum machine learning, Nature (London)
549, 195 (2017).

[11] D. Dong, C. Chen, H. Li, and T.-J. Tarn, Quantum reinforce-
ment learning, IEEE Trans. Syst., Man, Cybernet., Part B—
Cybernet. 38, 1207 (2008).

[12] L. Lamata, Basic protocols in quantum reinforcement learning
with superconducting circuits, Sci. Rep. 7, 1609 (2017).

[13] P. Mehta, M. Bukov, C.-H. Wang, A. G. R. Day, C. Richardson,
C. K. Fisher, and D. J. Schwab, A high-bias, low-variance
introduction to machine learning for physicists, Phys. Rep. 810,
1(2019).

[14] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y.
Tassa, D. Silver, and D. Wierstra, Continuous control with deep
reinforcement learning, arXiv:1509.02971.

[15] T. Caneva, T. Calarco, and S. Montangero, Chopped random-
basis quantum optimization, Phys. Rev. A 84, 022326
(2011).

[16] L. Szilard, iiber die entropieverminderung in einem thermody-
namischen system bei eingriffen intelligenter wesen, Z. Phys.
53, 840 (1929).

[17] R. Landauer, Irreversibility and heat generation in the comput-
ing process, IBM J. Res. Dev. 5, 183 (1961).

[18] C. H. Bennett, Notes on landauer’s principle, reversible compu-
tation, and maxwell’s demon, Stud. Hist. Philos. Sci. B: Studies
In History and Philosophy of Modern Physics 34, 501 (2003).

[19] S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, and M. Sano, Ex-
perimental demonstration of information-to-energy conversion
and validation of the generalized jarzynski equality, Nat. Phys.
6, 988 (2010).

[20] A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R.
Dillenschneider, and E. Lutz, Experimental verification of
landauers principle linking information and thermodynamics,
Nature (London) 483, 187 (2012).

[21] J. V. Koski, V. E. Maisi, J. P. Pekola, and D. V. Averin, Exper-
imental realization of a szilard engine with a single electron,
Proc. Natl. Acad. Sci. USA 111, 13786 (2014).

[22] M. D. Vidrighin, O. Dahlsten, M. Barbieri, M. S. Kim, V.
Vedral, and Ian A. Walmsley, Photonic Maxwells Demon, Phys.
Rev. Lett. 116, 050401 (2016).

[23] S. Lloyd, Quantum-mechanical maxwells demon, Phys. Rev. A
56, 3374 (1997).

[24] S. W. Kim, T. Sagawa, S. De Liberato, and M. Ueda, Quantum
Szilard Engine, Phys. Rev. Lett. 106, 070401 (2011).

[25] J. Gea-Banacloche, Splitting the wave function of a particle in
a box, Am. J. Phys. 70, 307 (2002).

[26] V. B. Sgrdal and J. Bergli, Quantum particle in a split box:
Excitations to the ground state, Phys. Rev. A 99, 022121 (2019).

[27] J. A. Nelder and R. Mead, A simplex method for function
minimization, Comput. J. 7, 308 (1965).

[28] M.J. D. Powell, An efficient method for finding the minimum of
a function of several variables without calculating derivatives,
Comput. J. 7, 155 (1964).

[29] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, in Proceed-
ings of the 15th ACM Workshop on Hot Topics in Networks
(ACM, New York, 2016), pp. 50-56.

[30] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,
G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, 1.
Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg et al., TensorFlow: Large-
scale machine learning on heterogeneous systems, software
available from tensorflow.org (2015).

[31] F. Chollet et al., Keras, https://keras.io (2015).

[32] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization, arXiv:1412.6980.

[33] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra,
and M. Riedmiller, ICML’14 Proceedings of the 3lst
International Conference on International Conference on Ma-
chine Learning, Beijing, China, 2014 (ACM, New York, 2014).

[34] M. Plappert, keras-rl, https://github.com/keras-rl/keras-rl
(2016).

042314-9

https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1038/s41586-018-0337-2
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.3847/1538-4357/aabfed
https://doi.org/10.3847/1538-4357/aabfed
https://doi.org/10.3847/1538-4357/aabfed
https://doi.org/10.3847/1538-4357/aabfed
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1103/PhysRevX.8.031086
https://doi.org/10.1103/PhysRevA.97.052333
https://doi.org/10.1103/PhysRevA.97.052333
https://doi.org/10.1103/PhysRevA.97.052333
https://doi.org/10.1103/PhysRevA.97.052333
https://doi.org/10.1103/PhysRevX.8.031084
https://doi.org/10.1103/PhysRevX.8.031084
https://doi.org/10.1103/PhysRevX.8.031084
https://doi.org/10.1103/PhysRevX.8.031084
https://doi.org/10.1073/pnas.1714936115
https://doi.org/10.1073/pnas.1714936115
https://doi.org/10.1073/pnas.1714936115
https://doi.org/10.1073/pnas.1714936115
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1109/TSMCB.2008.925743
https://doi.org/10.1109/TSMCB.2008.925743
https://doi.org/10.1109/TSMCB.2008.925743
https://doi.org/10.1109/TSMCB.2008.925743
https://doi.org/10.1038/s41598-017-01711-6
https://doi.org/10.1038/s41598-017-01711-6
https://doi.org/10.1038/s41598-017-01711-6
https://doi.org/10.1038/s41598-017-01711-6
https://doi.org/10.1016/j.physrep.2019.03.001
https://doi.org/10.1016/j.physrep.2019.03.001
https://doi.org/10.1016/j.physrep.2019.03.001
https://doi.org/10.1016/j.physrep.2019.03.001
http://arxiv.org/abs/arXiv:1509.02971
https://doi.org/10.1103/PhysRevA.84.022326
https://doi.org/10.1103/PhysRevA.84.022326
https://doi.org/10.1103/PhysRevA.84.022326
https://doi.org/10.1103/PhysRevA.84.022326
https://doi.org/10.1007/BF01341281
https://doi.org/10.1007/BF01341281
https://doi.org/10.1007/BF01341281
https://doi.org/10.1007/BF01341281
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1016/S1355-2198(03)00039-X
https://doi.org/10.1016/S1355-2198(03)00039-X
https://doi.org/10.1016/S1355-2198(03)00039-X
https://doi.org/10.1016/S1355-2198(03)00039-X
https://doi.org/10.1038/nphys1821
https://doi.org/10.1038/nphys1821
https://doi.org/10.1038/nphys1821
https://doi.org/10.1038/nphys1821
https://doi.org/10.1038/nature10872
https://doi.org/10.1038/nature10872
https://doi.org/10.1038/nature10872
https://doi.org/10.1038/nature10872
https://doi.org/10.1073/pnas.1406966111
https://doi.org/10.1073/pnas.1406966111
https://doi.org/10.1073/pnas.1406966111
https://doi.org/10.1073/pnas.1406966111
https://doi.org/10.1103/PhysRevLett.116.050401
https://doi.org/10.1103/PhysRevLett.116.050401
https://doi.org/10.1103/PhysRevLett.116.050401
https://doi.org/10.1103/PhysRevLett.116.050401
https://doi.org/10.1103/PhysRevA.56.3374
https://doi.org/10.1103/PhysRevA.56.3374
https://doi.org/10.1103/PhysRevA.56.3374
https://doi.org/10.1103/PhysRevA.56.3374
https://doi.org/10.1103/PhysRevLett.106.070401
https://doi.org/10.1103/PhysRevLett.106.070401
https://doi.org/10.1103/PhysRevLett.106.070401
https://doi.org/10.1103/PhysRevLett.106.070401
https://doi.org/10.1119/1.1446854
https://doi.org/10.1119/1.1446854
https://doi.org/10.1119/1.1446854
https://doi.org/10.1119/1.1446854
https://doi.org/10.1103/PhysRevA.99.022121
https://doi.org/10.1103/PhysRevA.99.022121
https://doi.org/10.1103/PhysRevA.99.022121
https://doi.org/10.1103/PhysRevA.99.022121
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1093/comjnl/7.2.155
http://tensorflow.org
https://keras.io
http://arxiv.org/abs/arXiv:1412.6980
https://github.com/keras-rl/keras-rl

