
PHYSICAL REVIEW A 103, 042410 (2021)

Single-particle digitization strategy for quantum computation of a φ4 scalar field theory

João Barata *

Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela,
Santiago de Compostela, E-15782 Galicia, Spain

Niklas Mueller †

Department of Physics, University of Maryland, College Park, Maryland 20742, USA

Andrey Tarasov‡

Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
and Joint BNL-SBU Center for Frontiers in Nuclear Science (CFNS) at Stony Brook University, Stony Brook, New York 11794, USA

Raju Venugopalan§

Physics Department, Brookhaven National Laboratory, Bldg. 510A, Upton, New York 11973, USA

(Received 21 December 2020; revised 11 March 2021; accepted 23 March 2021; published 8 April 2021)

Motivated by the parton picture of high-energy quantum chromodynamics, we develop a single-particle digi-
tization strategy for the efficient quantum simulation of relativistic scattering processes in a d + 1-dimensional
scalar φ4 field theory. We work out quantum algorithms for initial state preparation, time evolution, and final
state measurements. We outline a nonperturbative renormalization strategy in this single-particle framework.
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I. INTRODUCTION

Significant effort has been invested towards studying prob-
lems in quantum chemistry [1–4], condensed matter physics
[5–7], cosmology [8–10], and in high-energy and nuclear
physics [11–16], with digital quantum computers and analog
quantum simulators [17–22]. A major motivation is to deepen
our understanding of conventionally intractable features of
the ground-state properties of strongly correlated many-body
systems such as the spectrum of bound states. Another is to
advance the state of the art in scattering problems, which
provide dynamical information on such complex systems.

In this work, our focus will be on the problem of de-
veloping quantum algorithms for high-energy scattering and
multiparticle production in relativistic quantum field theory.
Underlying our work is the promising yet distant goal of
extracting dynamical information on the properties of hadrons
and nuclei in quantum chromodynamics (QCD).

Examples of scattering problems in QCD where quantum
information science can accelerate our present computational
capabilities are low-energy scattering in nuclear many-body
systems [23,24], the thermalization process in ultrarelativistic
ion-ion collisions [25], studies of the structure of nuclear
matter probed in deeply inelastic scattering (DIS) of elec-
trons off protons and nuclei [26–33], and the fragmentation of
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quarks and gluons into jets of hadrons [34,35]. For instance,
both jet fragmentation functions and DIS structure functions
require one to compute autocorrelation functions of currents
in Minkowski spacetime; this poses a challenge to classical
Monte Carlo methods that are constructed to compute Eu-
clidean spacetime correlators [36–43].

Quantum devices have the potential to overcome the limi-
tations of classical computers in addressing many of the above
problems. However, presently their limitation is that scattering
problems involve a vast range of spatial (momentum) and
temporal (energy) scales and require that a large number of
(local) quantum field operators be quantum simulated. This is
challenging with present day NISQ era technology restricted
to few tens of non-error-corrected qubits [22].

As discussed in seminal papers by Jordan, Lee, and Preskill
[44,45], quantum simulating scattering problems in relativis-
tic quantum field theories requires a lattice discretization and,
in the case of a bosonic theory, the truncation of the local
Hilbert space of field operators. One can view such a digitiza-
tion as defining a low-energy effective theory, in the sense of
a generalized renormalization group (RG) [46]. We will argue
here that, from this viewpoint, a digitization scheme does not
necessarily need to be based on a decomposition of local field
operators but, more generally, should be based on the most
economical implementation of the relevant directions of the
RG for a specific problem.

Pursuant to this goal, we will explore a digitization strat-
egy for the bosonic field theory of a real scalar field in
d + 1 spacetime dimensions based on a generalization of
relativistic Bose-symmetrized “single-particle states” previ-
ously discussed by us in [31]. For a wide class of problems,
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this digitization requires resources that are only logarithmic
in volume V (but linear in particle number), as opposed to
field-operator-based approaches that depend linearly on the
volume. We will discuss a strategy for initial state prepara-
tion, time evolution, and measurement for scattering processes
in high-energy physics. Our time evolution algorithm has a
gate complexity similar to that of [44,45]; however, because
the basis states are eigenstates of the free Hamiltonian and
of the particle number operator, initial state preparation and
measurement are particularly simple.

Our approach is unusual in the sense that relativistic many-
body systems are usually described by field operators within
quantum field theory. In relativistic theories, particle number
is not conserved and relativistic single-particle states in posi-
tion space are not Fourier conjugates of single-particle states
in momentum space. While it seems that these properties
render quantum simulation of relativistic quantum field theory
fundamentally different to those in quantum chemistry [1–4]
or in nonrelativistic low-energy nuclear physics [11–13,23],
we will demonstrate here that this is not the case and that we
are able to utilize algorithms that are conceptually similar.

A powerful motivation underlying our approach is the
single-particle picture [47] behind the well-known Feynman
diagram techniques to compute scattering cross sections in
high-energy physics at weak coupling. Because the computa-
tional complexity of Feynman diagram computations grows
factorially with the required precision, their computation
presents another opportunity for a quantum advantage [44,45].
Since, as noted, scattering problems can be formulated in
terms of Minkowski space field correlators, a first principles
path integral computation with classical Monte Carlo tech-
niques is challenging. Albeit considering a simpler theory, our
ultimate aim is to apply this approach to quantum simulate
scattering problems in quantum chromodynamics; a first step
towards this goal would be a hybrid strategy combining a
quantum treatment of some of the scattering degrees of free-
dom with a classical treatment of the rest [31]. A relevant
analogy in this regard is the simulation of quantum impurities
in strongly correlated condensed matter systems [48], or the
simulation of open quantum systems in heavy-ion collisions
[49]. In light of the many challenges of NISQ era computing,
the digitization strategy we will present may therefore offer
a useful compromise between being able to make progress
in a limited class of problems in high-energy physics with
restricted resources and conceptual simplicity versus simu-
lating any possible problem in quantum field theory in full
generality.

This paper is organized as follows: In Sec. II we will
discuss the conceptual basis of our approach to quantum
computing scattering cross sections in high-energy physics.
Our digitization strategy is discussed in Sec. III. In Sec. IV
we will present the single-particle digitization algorithm for
quantum computing scattering cross sections: state prepara-
tion is discussed in Sec. IV A, the implementation of the
time evolution operator as a quantum circuit in Sec. IV B,
the strategy to extract cross sections through measurements
in Sec. IV C, and renormalization aspects of the problem in
Sec. IV D. In Sec. V we summarize our results and discuss
extensions of this approach to include theories with fermion
and gauge fields with internal symmetries.

We elaborate on several of the discussions in the main text
in multiple Appendixes. In Appendix A we provide details
of the single-particle digitization strategy. In Appendix B
we discuss the state preparation algorithm in greater detail.
Appendixes C, D, and E contain details of the algorithm for
the time evolution operator. Finally in Appendix F we provide
further details of the renormalization procedure.

II. HIGH-ENERGY SCATTERING

Understanding the structure of matter at the subnucleon
scales of nuclear and particle physics requires a wide range of
scattering experiments. The theoretical foundations of these
scattering problems is well developed within the framework
of relativistic quantum field theory. The simplest formulation
of a scattering process is through the S-matrix,

Sβα ≡ 〈
�out

β

∣∣� in
α

〉
, (1)

defined as the overlap of asymptotic in- (|� in
α 〉) and out-

(|�out
β 〉) states, which are time-independent eigenstates of the

Hamiltonian H = H0 + V .
In the Heisenberg picture, all nontrivial information on

these states is encoded in the Lippmann-Schwinger equation
[50,51],∣∣� in/out

α

〉 = |φα〉 + G0V
∣∣� in/out

α

〉 = (V − V G0V )−1V |φα〉,
where |φα〉 are single-particle eigenstates of the free Hamilto-
nian H0 satisfying H0|φα〉 = Eα|φα〉, G0 ≡ (Eα − H0 ± iε)−1

and V − V G0V is the Schwinger operator. The S-matrix can
also be expressed as

Sβα = δαβ − 2π i δ(Eα − Eβ ) Tβα, (2)

where energy conservation is explicit, and the T -matrix is
defined as

Tβα = 〈φβ |V ∣∣�out
α

〉=〈� in
β

∣∣V |φα〉 = 〈
� in

β

∣∣(V − V G0V )
∣∣�out

α

〉
.

(3)

The cross section for a scattering process α → β is given by
the modulus squared of Tβα (multiplied by kinematic factors),

|Tβα|2 = 〈
� in

α

∣∣ (V − V G0V )Pout
β (V − V G0V )†

∣∣� in
α

〉
, (4)

with Pout
β = |�out

β 〉〈�out
β |. The T -matrix elements in Eq. (3)

can be computed by solving the Lippmann-Schwinger equa-
tion. This can be achieved using analytic perturbative tech-
niques such as the Born expansion [51] or nonperturbatively
using Schwinger’s variational principle [50], the Schwinger-
Lanczos [52], or R-matrix approaches [53].

Quantum variants of these methods are currently under
development; for an implementation of the Quantum-Lanczos
algorithm in a scattering problem; see [54]. We will proceed
here with the formulation of the quantum scattering problem
in the time-dependent Schrödinger picture [45,55].

Before we proceed in that direction, we note that our
single-particle digitization strategy for the S-matrix can be
mapped on to a virial expansion, which is a “cluster”
expansion in powers of the density that captures the many-
body properties of a system at low particle densities. It
is particularly successful in reproducing their ground-state
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properties,1 which are expressed as a density expansion in the
nth-order virial coefficients2

bn ∝
[

S† ∂S

∂E

]
n

, (5)

where [S† ∂S
∂E ]

n
of n → n scattering particles. Thus because

our single-particle strategy is optimal for capturing the many-
body dynamics of a relativistic theory at low occupancies, a
computation of n → n scattering matrix elements will allow
us to determine ground-state properties in our framework with
the same range of validity as the virial expansion. Indeed, one
can in principle go further and test the validity of this expan-
sion relative to a direct computation of ground-state properties
of relativistic many-body systems in our framework.

A. Schrödinger picture of S-matrix scattering

In the Schrödinger picture, the scattering process is de-
scribed in terms of time-dependent wave packets∣∣� in/out

g (t )
〉 ≡ ∫

dα g(α)e−iEαt
∣∣� in/out

α

〉
, (6)

where g(α) is a function that describes the localization of
the wave packet. In this approach, the Lippmann-Schwinger
equation can be expressed as∣∣� in/out

g (t )
〉 =|φg(t )〉 +

∫ ∞

0
dT e±i(H0∓iε)T V

∣∣� in/out
g (t ∓ T )

〉
,

(7)

where |φg(t )〉 is defined identically as in Eq. (6). The in-
wave packet satisfies the boundary condition |� in

g (−∞)〉 =
|φg(−∞)〉 at negative infinity, and the out-wave packet satis-
fies a similar condition at positive infinity. In the Schrödinger
picture, one may interpret V (T ) ≡ Ve−ε|T | as adiabatically
turning on the interaction to obtain |� in(t )〉 from evolution of
the initial condition |φg(−∞)〉 using Eq. (7) and likewise, in
reverse, for |�out

g 〉. This approach, employing single-particle
wave packets, will form the basis of our algorithm in Sec. IV.

B. Spacetime picture of scattering experiments at high energies

At high energies, the gap of single-particle states to
continuum particle-antiparticle pairs becomes small, and a
description of scattering in terms of the second quantized
language of quantum field operators appears natural. Quantum
simulation of this problem is desirable because of the well-
known challenges of classical computation.

However, interestingly, at high energies, for a wide class
of scattering problems, single-particle digitization strategies
applied at lower energies may be viable and indeed desirable.
The latter can be understood straightforwardly in the context

1The extension of the virial expansion to nonequilibrium autocorre-
lation functions is highly nontrivial; an excellent review of this topic
can be found in [56,57].

2This expression, originally formulated as a quantum many-body
extension [58,59] to the famous Beth-Uhlenbeck formula was later
generalized to discuss relativistic many-body n ↔ m inelastic pro-
cesses [60,61].

of the scattering of two protons at the ultrarelativistic energies
of the Large Hadron Collider (LHC). The wave packets of
the two colliding protons can be constructed formally, along
the lines of Eq. (6); however, such wave packets, as observed
by Bjorken and Feynman, for many final states of interest in
scattering at high energies are accurately described in terms
of the scattering of pointlike “parton” (quark, antiquark, and
gluon) constituents within the protons that are eigenstates of
the free QCD Hamiltonian [28,62]. In this parton picture of
high-energy scattering, as we will now discuss, the switch-on
and off time τ0 and the interaction time τI can be related to
physical timescales.

These timescales are best understood in the context3 of
the deeply inelastic scattering (DIS) of electrons (and other
leptons) off protons and nuclei. In DIS, the incoming elec-
tron emits a virtual photon that strikes a quark or antiquark
within the hadron, thereby providing information on the quark
and (indirectly) gluon distributions within. The relevant DIS
kinematic variables are the momentum resolution Q of the
probe (with Q2 
 �2

QCD, the QCD confinement scale) and the
Bjorken variable xBj ≈ Q2/s, where

√
s is the DIS center-of-

mass energy.
In the QCD parton model, xBj ∼ x is the momentum frac-

tion of the hadron carried by the struck quark or antiquark.
The DIS cross section at large xBj corresponds to the projec-
tion of the hadron wave function into a Fock state that is a
direct product state of single-particle parton states that make
up the hadron’s quantum numbers. In contrast, the small xBj

(high-energy) cross section corresponds to the scattering of
the virtual photon off a Fock state containing a large number
of partons, most of which carry a small fraction (x � 1) of the
hadron’s momentum.

The physically motivated time required to probe fluctua-
tions of the proton into differing parton configurations is the
Ioffe time [63] τ0 ∼ τIoffe = 1/(2Mp xBj), with Mp the proton
mass; in the DIS example, this gives the coherence time of
the fluctuation of the virtual photon into a parton state in the
rest frame of the proton or nuclear target.4 Likewise in DIS,
the interaction time of the probe is the typically much shorter
timescale τI ∼ 1/Q. A minimal bound on this timescale is τW ,
the Wigner time delay defined as ∂S/∂E , where E denotes
energy, in the virial expansion, we discussed previously, of a
scattering process of n → m particles [56–61,65].5

The parton picture is manifest when field theories are
quantized [71] on a lightlike surface x+ = 0, with the light-
cone Hamiltonian P− = P−

0 + V , defined as the generator

3We refer readers unfamiliar with DIS to our paper [31] for some
of the key references and for a discussion of aspects of this scattering
problem from a quantum computing perspective.

4In general, the coherence time is a distribution, with the stated
value being the upper bound. For fluctuations of the virtual photon
into a highly excited QCD Fock state, coherence time estimates are
considerably shorter [64].

5The generalization of these ideas relating asymptotic scattering
phase shifts to differences in energy levels of static quantities in a
finite box was pioneered by Luscher [66,67]. It is an active area of
research in lattice gauge theory [68,69], recently discussed in the
context of quantum computing [70].
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of translations in x+. The Galilean subgroup of the light-
front Poincaré group is isomorphic to the symmetry group
of two-dimensional quantum mechanics [72], allowing one
to formulate scattering problems in quantum field theory in
the language of nonrelativistic quantum mechanics. In par-
ticular, due to time dilation at high energies, the lightfront
potential is suppressed (by powers of the energy) relative to
the kinetic term; Fock states, which are single-particle direct
product states of partons, therefore provide a good eigenbasis
for high-energy scattering [73].

Even though the single-particle picture of high-energy
scattering finds an elegant representation in lightfront quan-
tization, it is not restricted to it. It is a generic feature of
Feynman diagrams in perturbation theory [74] and more re-
cently of so-called “conformal truncation” methods [75–77]
introduced in the context of conformal field theory [78].
This property of high-energy scattering motivates exploring
a single-particle digitization strategy, which we will discuss
at length in the rest of this paper in conventional equal time
quantization.6 Further, as detailed in Sec. IV C, this approach
is particularly valuable in performing measurements on a
quantum computer.

Our single-particle digitization strategy will encounter
significant challenges when applied to gauge theories. Con-
cretely, when applied to the digitization of theories coupled
to gauge fields, the presented time evolution strategy must be
modified, as we discuss further in Sec. V. Nevertheless one
may be able to make progress employing this strategy in phys-
ical problems where hybrid quantum and classical techniques
are applicable; in QCD, these include these include effective
field theories (EFTs) for jet physics [81], high parton densities
(small x) [82] and at finite temperature [83], and a lattice EFT
for computing parton distributions [38].

III. SINGLE-PARTICLE STRATEGY

In this section, and in the next, we will develop a single-
particle digitization strategy for a relativistic (real) scalar field
theory with local quartic interactions in d + 1 spacetime di-
mensions. The Hamiltonian for this theory is given by

H̄ =
∫

dd x
[
π2

x

2
+ 1

2
(∇φx)2 + m2

2
φ2

x + λ

4!
φ4

x

]
, (8)

where m and λ are the (bare) mass and quartic coupling,
and ∇ is the spatial gradient operator in d dimensions. The
Heisenberg field operators are

φx =
∫

dd p
(2π )d

1√
2 ωp

[ap + a†
−p]eip·x, (9)

which satisfies, with its canonical conjugate operator πx,
the equal-time commutation relations [φx, πy] = iδ(d )(x − y).
The annihilation (creation) operators ap(a†

p) are momentum-
space Fock operators, corresponding to a set of harmonic
oscillators with frequency ωp =

√
p2 + m2 and commutation

6For recent work on quantum computing in lightcone quantization,
see [79,80].

relations [ap, a†
k] = (2π )dδ(d )(p − k), [ap, ak] = [a†

p, a†
k] =

0. Single-particle states are defined as

|p〉phys ≡ √
2 ωpa†

p|vac〉, (10)

which satisfy the relativistic normalization condition
〈p|k〉phys = 2 ωp δ(3)(p − k), where |vac〉 denotes the Fock
vacuum.

We discretize the theory on a spatial lattice of size Nd
s and

express the Hamiltonian (in dimensionless units) as

H ≡ asH̄ =
∑

n

[
1

2
π2

n + 1

2
(∇φn)2 + m2

2
φ2

n + λ

4!
φ4

n

]
, (11)

where m = m as, λ = λ a4−d
s are dimensionless bare mass

and coupling parameters, as the lattice spacing, and n =
(n1, . . . , nd ), ni ∈ [0, Ns − 1] labels a point x = nas on the
lattice. We will likewise define a momentum space lattice
vector q = (q1, . . . , qd ), qi ∈ [−Ns

2 , Ns
2 − 1]. The lattice field

operators are

φn = 1√
V
∑

q

1√
2ωq

[aq + a†
−q]ei2πn·q/Ns ,

πn = −i√
V
∑

q

√
ωq

2
[aq − a†

−q]ei2πn·q/Ns , (12)

where V = Nd
s and ωq = ωq a−1

s is the dimensionless energy.
Note that we use the same notation for the dimensionless
lattice Fock operators aq and the dimensionful continuum
operators in Eq. (9).

We will implement below the time evolution operator of
the free Hamiltonian [setting λ = 0 in Eq. (11)] in the mo-
mentum representation. This allows us to use the continuum
dispersion relation ωq =

√
p2 + m2 [p ≡ p(q)], as opposed

to the lattice dispersion relation that one has when working
in position space; this potentially reduces discretization errors
significantly.

The key idea in our digitization scheme is to decompose
the many-particle Hilbert space into single-particle sectors
H = ⊗∞

l=0 Hl , where a number of qubits are used to represent
either momentum or position eigenstates in a binary decom-
position. Since we are dealing with a relativistic theory where
particle number is not conserved, an additional qubit is used to
indicate whether or not a particle “exists.” With this in mind,
the single-particle Hilbert space is spanned by

Hl = span{|�〉(l ), {|q〉(l )}}, (13)

where � denotes “empty states, and |q〉 “occupied states.
Further, a “register” of N ≡ log2 V + 1 spins (qubits) repre-
sents a relativistic single-particle state with momentum q =
(q1, . . . , qd ) in d dimensions,

|q〉(l ) ≡ |q1, . . . , qd〉|↑〉, (14)

where one qubit |n〉 = |↑〉 denotes that the single-particle
state is occupied. Each momentum component of the occupied
single-particle state

|qi〉 ≡ |si〉||qi|〉 (15)

is represented by (N − 1)/d qubits, where si = sign(qi ) is the
sign (one qubit) and |qi| the absolute value (abs). Likewise, we
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define an unoccupied single-particle state as a state where abs,
sign, and occupation number qubits are all in the |↓〉 state,

|�〉(l ) ≡ |↓⊗d·Nabs
,↓⊗d ,↓〉, (16)

and the Fock vacuum is defined as |vac〉 = ⊗
l |�〉(l ). We

will represent these momentum states using a binary en-
coding with the qubits representing the digits. In this case,

Nabs = N−1
d − 1 = log2 (V/2d )

d qubits.7 States with zero occu-
pation number but finite q are unphysical and are excluded.
Concrete examples of this single-particle digitization scheme
are given in Appendix A. The normalization 〈q|q′〉 = δq,q′ of
these basis states differs from the relativistic normalization in
Eq. (10), with |q〉 = |p〉phys/

√
2ωq. A generic state |ψ〉(l ) ∈

Hl can be written as

|ψ〉(l ) = a0|�〉(l ) +
∑

q

aq|q〉(l ), (17)

with |a0|2 +∑
q |aq|2 = 1. The free part of the Hamiltonian

(H0) is block diagonal with the blocks labeled by the number
of particles. Particle number eigenstates are on-shell single-
particle states and those that do not correspond to virtual
particles.

The Fock operators in Eq. (12) for the M many-particle
states on the combined Hilbert space H = ⊗∞

l=0 Hl are

aq ≡ lim
M→∞

1√
M

M−1∑
l=0

a(l )
q , (18)

with a(l )
q , a(l )†

q denoting chains of spin raising and lowering
operators for each q, and (a(l )†

q )2 = (a(l )
q )2 = 0. In practice,

one truncates the number of single-particle registers at a fi-
nite M. If M is large compared to the typical occupancy
of a state n ≡ ∑

i n
(i), the bosonic commutation algebra is

realized, [aq, a†
q′ ] = δq,q′ + O( n

M ). Additional details of the
construction are presented in Appendix A.

In the single-particle digitization of the Hilbert space of
the scalar field theory, its dimension grows logarithmically
with the volume V and linearly with M. This is ideal for
high-energy scattering problems, where the particle number
density is small, such as the Bjorken limit [26–29] of the DIS
problem we discussed earlier. The digitization is not econom-
ical for a very dense system because, as we will discuss, Bose
symmetrization creates a large overhead of unphysical states.
However, as we also noted, our digitization strategy could
potentially be extended to such dense systems employing a
hybrid quantum and classical approach.

IV. QUANTUM ALGORITHM

In this section, the single-particle digitization strategy will
be formulated as a concrete algorithm to quantum compute
scattering cross sections. In line with the spacetime picture
discussed in Sec. II, and paralleling the approach of Jordan,

7To avoid a sign ambiguity, we choose the lattice such that qi =
0 is excluded. Then si = ↑(↓) is a positive (negative) sign. We use
a physical convention |↑/↓〉 of up and down spins to label states,
instead of the more common |0/1〉 notation.

Lee, and Preskill [45,55], the components of our algorithm
are

(A) Initial state preparation, discussed in Sec. IV A.
(B) Simulating the time evolution, discussed in Sec. IV B.
(C) Measurement of observables and their relation to scat-

tering cross sections, discussed in Sec. IV C.
(D) Renormalization, discussed in Sec. IV D.
These different elements are compactly summarized in

Fig. 1.
We will first discuss the preparation of the initial state of

noninteracting particles in spatially separated wave packets.
Their preparation is particularly simple using the digitization
presented in Sec. III compared to the field-based approach of
[45,55,84], because single-particle states and the vacuum are
computational basis states. Our algorithm consists of prepar-
ing a quantum mechanical superposition of these basis states
to form wave packets, placing them in separated regions of
phase space and finally Bose symmetrization of the resulting
few or many-body wave function.

To implement the time evolution operator, we will employ
a Suzuki-Trotter scheme8 [87,88]. We will treat the time evo-
lution of the free and interacting parts of the Hamiltonian
in Eq. (11) separately. We first evolve the wave packet with
the free Hamiltonian H0, which is diagonal in the momen-
tum representation. This is followed by a squeezing operation
(analogous to that performed in quantum optics [89,90]), a
quantum Fourier transformation [91] from momentum space
to position space, and an implementation of the interaction
term in position space, where it is local.

This algorithm differs from the field-based approach of
[45,55,84] where the time evolution operator is split into a
part diagonal in the φx-basis and one diagonal in the conjugate
πx-basis. While the overall Trotter complexity scales as O(V )
in both cases, an important difference is that we avoid the
lattice discretization of the Laplacian in Eq. (11) by working
directly in momentum space.

Time evolution involves a switch-on of interactions
from the noninteracting theory in the infinite past, m(0) ≡
m0, λ(0) = 0 (in practice at some finite time t = 0) towards
acquiring the renormalized, physical couplings m(τ0) ≡
mren, λ(τ0) = λren at t = τ0 right before the particles collide.
The nonperturbative renormalization in the single-particle
framework, which differs from that of [45,55], is discussed
in Sec. IV D.

An important practical issue for the quantum algorithm
is the spreading of the wave packets during the switch-on
time of interactions, which may potentially cause the wave
packets to interact before the coupling is turned to its final
value. For this one may use the “forward-backward” evolution
scheme outlined in [45,55]. Note, however, that because at
large energies the dispersion is approximately linear ω ∼ |p|,

8For practical applications, it is important to note that more efficient
algorithms for time evolution exist. One such example is the linear
combination of unitaries [85], later generalized to the method of
quantum singular transformations [86]. The latter class of quantum
algorithms not only significantly speeds up time evolution, but is also
an efficient replacement of the classic phase estimation algorithm
discussed in the context of measurements in Sec. IV C.
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FIG. 1. Overview of the general algorithm to quantum compute high-energy scattering cross sections, including the values of the bare
couplings λ and m for simulation time t . Initial state preparation is discussed in Sec. IV A, time evolution in Sec. IV B, and measurement of
particle cross sections in Sec. IV C. The choice of (renormalized) couplings λ(t ), m(t ) is discussed in Sec. IV D.

the spreading of the wave packets is anticipated to be small
[92].

Another relevant point is that the adiabatic preparation of
single-particle states [45,55] will require a very large number
of Trotter steps at high energies and likewise for the turn-off
of interactions. This can be understood by considering the en-
ergy gap between single-particle states with momentum p and
energy E = (p2 + m2)

1
2 , and the lowest of the two-particle

states with total momentum p̃ ≡ p1 + p2 (with relative mo-
mentum q̃ ≡ p1 − p2 = 0) and energy E = [p̃2 + (2m)2]

1
2 at

weak coupling. Because this gap vanishes as p → ∞ and
p̃ → ∞, adiabatic state preparation is all but impractical at
high energies.

Different state preparation algorithms have been suggested
[93–98] which are potentially faster than adiabatic state prepa-
ration. We note, however, that, departing from the strictly
idealized S-matrix picture, in scattering processes such as DIS
in QCD discussed in Sec. II B, the Ioffe time and like physical
scales are the relevant timescales for state preparation and may
allow for quicker nonadiabatic state preparation. Because the
algorithm discussed below is general, and one may also make
use of alternative state preparation algorithms [93–98], we
will not say anything further beyond noting this interesting
possibility.

We will discuss finally in this section the determination
of scattering cross sections, utilizing a natural connection
of our digitization strategy to particle physics concepts. In
contrast to field-based digitizations [45,55], particle number
measurements do not require any additional gate operations.
Measurement of energy density or momentum, for exam-
ple, via a phase estimation algorithm, have a simple gate
complexity. Some of the “classical analysis” in high-energy
experiments, of binning data or imposing kinematic cuts, can
be incorporated directly in the quantum algorithm. We argue
that, using novel techniques such as oblivious amplitude am-
plification [91,99,100], a quantum computer could possibly
“beat” an actual particle physics experiment by producing rare
events with a higher probability.

A. Initial state preparation

We will now discuss the state preparation of a Bose-
symmetric state of single-particle wave packets at t = 0 and
zero coupling that are well separated in position space. As a

first step, we create wave packets separately in n of the M
particle registers (where n is the number of initial scatter-
ers, typically n = 2). Each wave packet i = 0, . . . , n − 1 is
centered at (x̄i, p̄i ) and is Gaussian distributed with a width
(�x,�p) around this center, where |�x| � |x̄i − x̄ j | for all
i �= j (here assumed to be identical for all particles). Typically
one chooses |�x| ∼ 1/m, and |p| 
 |�p| ∼ m, where m is
the mass (in dimensionless units), so that particles are well
localized on macroscopic scales.

Wave packets comprised of single-particle states |q〉,
located at the origin (x̄i, p̄i ) = (0, 0), are written9 in a mo-
mentum space representation as

|�〉 = 1√
V
∑

q

�q|q〉, (19)

where �q is a real, positive, and strongly localized distribution
such as a Gaussian distribution. Each such wave packet can
be translated to (x̄i, p̄i ) �= (0, 0) such that as previously, |x̄i −
x̄ j | 
 |�x|, and pi corresponds to projectile kinematics, using
circuits we will discuss shortly.

To create a wave packet in the momentum space repre-
sentation, centered at (x̄i, p̄i ) = (0, 0), and with width �p
(|�x| ∼ |�p|−1), from the vacuum state |�〉 [Eq. (16)] we use
a simple variant of the algorithm in [101,102], which we il-
lustrate below for d = 1 spatial dimensions. First, accounting
for the q → −q symmetry of �q, we first flip the occupation
number qubit and then apply the Hadamard gate (H) to the
sign qubit,

|↓⊗Nabs
,↓,↓〉 σ x,H−−→ 1√

2
[|↓⊗Nabs

,↑,↑〉 + |↓⊗Nabs
,↓,↑〉].

(20)

Subsequently, we rotate all remaining Nabs ∼ log2(Ns) qubits
by an angle θk = π/4 − εk ,

|↓〉(k) → cos(θk )|↓〉(k) + sin(θk )|↑〉(k), (21)

where k ∈ [0, Nabs − 1] and εk ∈ [0, π/4). Thus for each
|↓〉(k) the state gets a cos(θk ) coefficient, while each |↑〉(k)

9We will henceforth drop the label (l ) denoting a particular single-
particle state, as in Eq. (17).
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FIG. 2. (a) Translation operator for d = 1, where we abbreviate
T ≡ T (1)

n1
= (T (1)

1 )|n1| for n1 > 0 and (T (1)†
1 )|n1| for n1 < 0. A white

(black) circle indicates control by the |↑〉 (|↓〉) state. (b) For decom-
position of the circuit, see text for details.

receives a sin(θk ) contribution. One can relate each εk to a
specific distribution.10

Subsequently, we displace the centers of every single-
particle wave packet in position and momentum space, such
that they are widely separated |x̄i − x̄ j | 
 |�x|, with p̄i de-
noting the initial momentum of each projectile. To achieve
this, we need to use the translation operator Tn (Tq) in position
space (momentum space), defined as

Tn|q〉 = e−i 2πn·q/Ns |q〉, Tn|�〉 = |�〉, (22)

where x = nas and n = (n1, . . . nd ). It can be decomposed
in terms of one-dimensional translation operators Tn ≡⊗d

k=1 T (k)
nk

. To illustrate the circuit implementation of T (k)
nk

,
we will consider the operator for a translation by one lat-
tice site in the positive direction T (k)

1 . A finite translation
can then be achieved by successive applications of T (k)

nk
=

(T (k)
1 )nk (T (k)

nk
= (T (k)†

1 )|nk |) if nk > 0 (nk < 0), or directly via

a simple modification of the algorithm for T (k)
1 , with identical

gate complexity.
The circuit for an infinitesimal translation11 T1 is given in

Fig. 2 acting on a state in the momentum space basis, using
the gate Rt ≡ diag(1, exp{−2π i/2t }). Because the operators
T and T † act on the register containing |q|, their action is
controlled by the sign qubit to account for the sign in the
exponent of Eq. (22). The momentum translation operator Tq
can be implemented using exactly the same circuit, preceded
by a change of basis |q〉 → |n〉 (via a quantum Fourier trans-
form, as will be discussed in Sec. IV B 3). The generalization
to arbitrary d is straightforward and has O(M log(V )) circuit
complexity.12

The result of this procedure are multiparticle initial states
comprising widely separated, nonoverlapping, wave packets
|�i〉, and “empty” vacuum registers |�〉,

|φ〉 ≡ |�0, �1, . . . �n−1,�, . . . , �, . . . 〉. (23)

The corresponding Bose-symmetrized state is given by

|φB〉 ≡ 1√
N
∑

P

P̂|φ〉, (24)

10This distribution should be one that is probabilistic, namely, effi-
ciently integrable with importance sampling techniques [101].

11We will consider now the d = 1 case and drop the label k.
12Assuming large volumes, we will not discuss the action of the

translation operator on the spatial boundaries.

where P̂ is the Bose permutation operator and N = M!/(M −
n)!.

To prepare |φB〉 [Eq. (24)] from |φ〉 [Eq. (23)], we will use
a variant of an algorithm which, for the case n = 1, M = 2,
we can illustrate as

|�,�〉|0〉 H−→ |�,�〉 1√
2

[|0〉 + |1〉]

CSWAP−−−−→ 1√
2

[|�,�〉|0〉 + |�,�〉|1〉]

CNOT−−−→ 1√
2

[|�,�〉 + |�,�〉]|0〉 = |φB〉. (25)

The basic idea is to introduce s ≡ log2 (M!/(M − n)!) ∼
O(Mn) ancilla qubits (s = 1 in this example), which are pre-
pared in a symmetric Bell superposition state. Each term in
this superposition controls a specific SWAP operation be-
tween pairs of particle registers. The CNOT operation uses
the occupation number qubits of the registers to uncompute
the ancilla. Circuits for arbitrary n and M do not differ funda-
mentally from this example but are slightly more complicated
and are discussed in Appendix B.

In particular, if M and n cannot be chosen such that s
is an integer, one must choose s = �log2 (M!/(M − n)!)� ∼
O(Mn), where the symbol � y� denotes the smallest integer
larger than y. As discussed in Appendix B, the symmetriza-
tion yields some unwanted permutations in this case which
are eliminated through measurements and the symmetriza-
tion procedure becomes probabilistic as opposed to exact if
log2 [M!/(M − n)!] is an integer. The chance of returning the
desired state is psuccess = N /2s � 1/2. As shown in Appendix
B, one can always pick M for fixed n such that the probability
of success is maximized. Note that the uncomputation of the
s ancilla qubits for n � 2 requires using information stored
in the momentum and position registers as control qubits.
Fermionic states can be prepared along similar lines.13

Particles generated during the time evolution of the initial
state are accommodated by a large number of empty registers
n� ≡ M − n ≈ M 
 n initially. A rough estimate for M is
the number of particles in the final state, ranging widely with
energy from a few to few tens to few hundreds, an upper bound
for which is the ratio of the collision energy to the particle
mass

√
s/ m. This estimate does not include virtual states the

system could be fluctuating into over shorter timescales. In
weak coupling, there is a one-to-one correspondence between
the Fock space explored in our digitization and that described
by Feynman diagrams, allowing us to estimate that M should
scale as the number of all internal and external lines. In the
strong coupling limit, no such estimate is available, and thus
explicit numerical analysis, including a nonperturbative renor-
malization procedure, will be required.

This algorithm for initial state preparation can be con-
trasted with the corresponding one in the field-based dig-
itization [45,55]. In the latter case, one first prepares the
noninteracting vacuum state in a Gaussian basis state using

13The authors plan to return to this case in future work, with the
expectation that this leads to novel fermion-qubit mappings [103].
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FIG. 3. Overview of the time evolution scheme for one Trotter-
Suzuki step δ. Here S (discussed in Sec. IV B 2) and qFT (discussed
in Sec. IV B 3) denote the squeezing operation and the quantum
Fourier transformation, respectively.

the algorithm of [104], while in our case the vacuum is a
computational basis state. Second, one employs a Suzuki-
Trotter scheme to realize the application of position space
Fock operators onto the vacuum state approximated by a lin-
ear combination of the field operators φx and πx in a region
of space. In this case, Bose symmetrization is built into the
realization of operators φx and πx and does not need to be
enforced explicitly. In our case, a superselection rule specifies
the physical sector removing unsymmetrized states.

B. Time evolution

We will follow a Trotter-Suzuki scheme with Nδ = (t −
t0)/δ steps to implement the time evolution operator,

U (t, t0) ≡ e−iH (t−t0 ) = (e−iHδ )Nδ + O(δ2)

= (e−iHI δe−iH0δ )Nδ + O(δ2) ≡ (UIU0)Nδ + O(δ2),

(26)

separating the evolution operator into free U0 ≡ exp {−iH0δ}
and interacting UI ≡ exp{−iHIδ} parts, where H0 is given
by the quadratic terms and HI by the φ4 interaction term in
Eq. (11).

We implement U0 in the momentum space basis of Bose-
symmetrized states (13)–(17), where it is diagonal. Using a
combined squeezing operation and Fourier transformation,
the interaction part UI is then implemented in position space
where it is local. Our strategy is summarized in Fig. 3, and the
different elements are worked out below.

1. Free part U0

The infinitesimal (normal-ordered) time evolution operator
U0 is given by

U0 ≡ exp

{
−iδ

∑
q

ωq a†
qaq

}

= exp

{
− iδ

M

∑
q

ωq

[
M−1∑
i=0

a(i)†
q a(i)

q +
M−1∑

i �= j=0

a(i)†
q a( j)

q

]}
,

(27)

where U0 is diagonal when acting on a state |ψ〉 in the repre-
sentation discussed above. It can be written as multiplication
by a phase factor,

U0 |ψ〉 = e− iδ
M

∑
q ωqnq (1+n� )|ψ〉 = S1+n�

ϕ |ψ〉, (28)

where Sϕ ≡ exp{−i δ
M ϕ}, ϕ ≡ ∑

n̄ ωqnq is the total energy of
all occupied states, and nq (n�) the number of registers with
momentum q (empty registers), while ωq is the continuum

FIG. 4. Quantum circuit for U0, using O(Mpoly log(V )) opera-
tions and 2� ancilla qubits. Double lines indicate particle registers
(including |q|, sign, and occupation number qubits).

dispersion relation. The factor nq(1 + n�) reflects the two
terms in the exponent of Eq. (27).

The algorithm for computing Eq. (28) is summarized in
Fig. 4. It involves first computing the phase ϕ. This is done
by the subcircuit depicted in Fig. 5, with two auxiliary reg-
isters of � qubits. Here � is determined by the precision of
the algorithm to compute ϕ, + = is the quantum-addition
operation [105,106] and we treat the circuit ω to compute
ωq as a quantum “oracle.” The number of ancilla registers 2�

is determined by the precision with which we wish to compute
ωq from q. It should be taken to be similar to the number
of qubits � ∼ O(log(V )/d ) that are necessary to realizing q
in one dimension. The number of gate operators included in
ω is poly log(V ). Efficient algorithms to compute simple

arithmetic functions can be found in the literature [107–110].
Once ϕ is computed, one follows with O(M ) diagonal

phase rotations S1+n�
ϕ , using the occupation number qubits of

each register as control qubits. (The detailed circuit is shown
in Appendix C.) Finally, we uncompute |ϕ〉, so that in total we
use O(M ) + = and ω gates. As a consequence, the algo-
rithm for U0 has an overall complexity of O(M poly log(V ))
gate operations per Trotter step.

2. Squeezing transformation

In order to implement the interaction piece of the time evo-
lution operator UI , we first perform a transformation from the
single-particle representation in momentum space to position
space. In a relativistic theory, single-particle states in posi-
tion and momentum space are not simply Fourier conjugates.
Therefore to obtain one from the other requires a combined
squeezing operation [90] followed by a (quantum) Fourier
transformation. To illustrate this, note that position space Fock
operators are given by

an ≡ 1√
2

(φn + iπn), a†
n ≡ 1√

2
(φn − iπn), (29)

with the commutation relations [an, a†
n′ ] = δn,n′ , and

the single-particle decomposition an ≡ ∑
i a(i)

n /
√

M,
a†

n ≡ ∑
i a(i)†

n /
√

M. We can define the Fourier conjugates
Aq of an as

an ≡ 1√
V
∑

q

Aq ei2πn·q/Ns , (30)

and likewise for their Hermitian conjugate counterparts. These
are related [90] to the momentum space Fock operators aq, a†

q
by

Aq ≡ 1
2

[
ω

− 1
2

q + ω
1
2
q
]
aq + 1

2

[
ω

− 1
2

q − ω
1
2
q
]
a†

−q, (31)
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FIG. 5. Quantum circuit to compute ϕ, based on the algorithm in [111]. ω is an oracle to compute ω(q) for input |q〉, and + = is a

quantum-addition circuit [105,106]. The � symbol appearing in the gate + = denotes that the associated register is an input into the gate.
The relevant particle register input for the ω gates is denoted by (small) black boxes accordingly.

and likewise for A†
q. Such squeezing operations are well

known in quantum optics [89,112,113], where they are natural
in the preparation of squeezed states. We will work out here
their implementation on a digital quantum computer. To do so,
note that Eq. (31) is realized by

Aq = SaqS†, A†
q = Sa†

qS†, (32)

where S ≡ ∏
q Sq, as shown in Fig. 6, and

Sq ≡ exp{−zq[a†
qa†

−q − a−qaq]}, (33)

is a unitary operator with zq ≡ 1
2 log(ωq). See also

Appendix D where we derive Eq. (31) from Eq. (32) and
Eq. (33).

The circuit implementation of Sq is compactly summarized
in Fig. 7. We can use a Trotter scheme to implement S, split-
ting the operation into V modes q and M(M − 1)/2 steps over
all possible register pairs i �= j, i, j = 0, . . . , M − 1, with a
Trotter error of O([nqzq/M]2), where nq is the occupation
number of the mode q of the state the operator acts on. We
can then write

S =
∏

q,〈i �= j〉
Sq,i j (34)

and

Sq,i j ≡ exp

{
− zq

M

[
a(i)†

q a( j)†
−q − a( j)

−qa(i)
q

]}
. (35)

To implement Sq,i j , we decompose the single-particle Fock
operators into spin raising and lowering operators (see Ap-
pendix A),

Sq,i j ≡ exp

{
− i

zq

M
σ

y
q,i j

}
, (36)

FIG. 6. Squeezing operator decomposition S = ∏q=qV−1
q=q0

Sq. No-
tice that since creation and annihilation operators of different
momentum modes commute, there is no Trotter error associated to
this decomposition. See Eq. (33).

where σ
y
q,i j ≡ (−i)[a(i)†

q a( j)†
−q − a( j)

−qa(i)
q ]. In the matrix repre-

sentation of the N occupation and momentum qubits spanning
{|q〉 ⊗ | − q〉, |�〉 ⊗ |�〉}, this can be written as

σ
y
q,i j =

⎛
⎜⎜⎜⎝

0 . . . 0 −i

0 . . . 0
...

. . .
...

i 0 . . . 0

⎞
⎟⎟⎟⎠ ≡ σ

y
N

. (37)

Following a similar strategy as in [114], we block-
diagonalize σ

y
N

, using the (periodic) binary increment oper-
ator IN (I1 = σ x)

I†
N

σ
y
N

IN =

⎛
⎜⎜⎜⎝

0 . . . . . . 0
... 0 0
...

. . . i
0 0 −i 0

⎞
⎟⎟⎟⎠ ≡ σ̃

y
N

. (38)

The binary increment operator is a simple circuit and can be
found in the literature (for example, in Fig. 2 of [114]), and is
given explicitly in Appendix D. The recursion relation

σ̃
y
N

= 1
2 (1 − σ z ) ⊗ σ̃

y
N−1, (39)

where σ̃
y
1 = −σ y, allows us to write

σ̃
y
N

=
[

N⊗
i=2

1

2
(1 − σ z )

]
⊗ σ̃

y
1 . (40)

Because (1 − σ z ) is diagonal, the problem reduces to diag-
onalizing σ̃

y
1 = −σ y = −S̄Hσ zHS̄†, using the Hadamard H

and phase gate S̄ acting on one qubit. Consequently, we can

FIG. 7. Trotter decomposition of the squeezing operator S into
M(M − 1)/2 operations Sq,i j (i �= j). Note that because Sq,i j = Sq, ji,
we can simplify Sq,i j (zq )Sq, ji(zq ) = Sq,i j (2zq ).
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FIG. 8. Circuit implementation of Sq,i j [Eq. (36)], using the
bit-increment operator IN and the diagonal single qubit ro-
tation exp{i zq

M σ z}. It acts on the N qubits that make up
(−i)[a(i)†

q a( j)†
−q − a( j)

−qa(i)
q ].

write

Sq,i j =IN (1 ⊗ . . . 1 ⊗ HS̄†) R

[
zq

M

]
(1 ⊗ . . . 1 ⊗ S̄H ) I†

N
,

(41)

where R[ zq

M ] ≡ exp {i zq

M [⊗N
i=2

1
2 [1 − σ z]i] ⊗ σ z} is a simple

controlled (diagonal) σ z-rotation. The algorithm is compactly
summarized in Fig. 8.

The circuit implementation of the squeezing transforma-
tion contains O(M2V poly log(V )) elementary gate operations
per Trotter time step, where poly log(V ) stands for the the
complexity of the bit increment IN and controlled z-rotation
R(zq/M ). The M2 factor is due to iterations over pairs of par-
ticle registers, while V reflects the operation being performed
for all modes q.

3. Quantum Fourier transform

Because the quantum Fourier transformation in Eq. (30) is
a standard transformation and can be found in many textbooks
[91], our discussion here will be brief. Within our digitization
framework, it is performed separately for each register and
dimension, conditional on whether the corresponding register
is occupied. Towards this end, we first bring states [(13)–(17)]
into a form where we can apply known algorithms for the
symmetric quantum Fourier transform. This is done by first
flipping the sign qubits which we then use to control σ x-
operations of all remaining qubits making up qi, i = 1, . . . , d .
Interpreting the sign qubits as the major qubits of the decom-
position of each qi, this allows us to apply the algorithm of
[84], with O(Mpoly log (V )) elementary gate operations.

4. Interaction part UI

We now turn to the final quantum circuit for the time
evolution operator, that of the interaction term UI . The φ4

interaction term is local in position space and can be decom-
posed into V Trotter steps per time step δ,

UI = exp

{
−iδ

∑
n

λ

4!
φ4

n

}
=
∏

n

exp

{
−i

δλ

4!
φ4

n

}
≡
∏

n

UI,n.

(42)

FIG. 9. Circuit implementation of UI,n. Double lines indicate
particle registers. The operator V ≡ V (i)

n (i = 0, . . . , M − 1) is given
in Eq. (46).

To implement the circuit for this operator, we write the field
operator as φn ≡ ∑M−1

i=0 φ(i)
n /

√
M, where

φ(i)
n ≡ a(i)

n + a(i)†
n√

2
= 1√

2

⎛
⎜⎜⎜⎝

0 . . . 0 1

0 . . . 0
...

. . .
...

1 0 . . . 0

⎞
⎟⎟⎟⎠ ≡ 1√

2
σ x
N,

(43)

with σ x
N

being the N-qubit operator decomposition of φ(i)
n ,

comprising the qubits that span {|n〉, |�〉}, as outlined in
Appendix A. Following a similar strategy as before for the
implementation of the squeezing operation in Sec. IV B 2, we
write

UI,n ≡ VnU diag
I,n V †

n , (44)

where U diag
I,n is a diagonal rotation matrix given by

U diag
I,n ≡ e−i�

∑
〈i, j,k,l〉 φ

(i) diag
n φ

( j) diag
n φ

(k) diag
n φ

(l ) diag
n , (45)

with � ≡ δλ/(96M2) and Vn ≡ ∏M−1
i=0 V (i)

n where

V (i)
n = IN(1 ⊗ . . . 1 ⊗ H ). (46)

Here IN is the bit-increment operator and H the
Hadamard gate, while φ

(i) diag
n ≡ V (i)†

n φ(i)
n V (i)

n satisfies
φ

(i) diag
n = ⊗

j
1
2 (1 − σ z ) j ⊗ σ z, in analogy to the previous

section.
The algorithm to implement UI,n is compactly summarized

in Fig. 9, where U diag
I,n can be realized using standard tech-

niques for quantum simulation [91]. The exact form of U diag
I,n

can be obtained by performing the summation over 〈i, j, k, l〉
in Eq. (45). There are five distinct cases in this sum: either
the four particles’ indices match, three indices match, two
indices match, two pairs of indices match independently or
they all differ; to exemplify how this summation is carried
out, we explicitly compute U diag

I,n for M = 4 and n = −1/2 in
Appendix E.

The algorithm for UI involves O(M4V poly log(V )) ele-
mentary gate operations. The M4 dependence originates from
the need to account for all the possible ways to form four-
tuples with M particles and reflects the brute force approach
detailed in Appendix E. This bound can be lowered [presum-
ably down to O(M )], provided one finds an efficient algorithm
to deal with the combinatorics in computing the respective
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phases by summing over 〈i, j, k, l〉; unfortunately we have not
been able to construct such a simplified algorithm thus far.
The linear dependence on volume is due to the fact that one
has to loop over all positions while performing, for each one,
O(poly log(V )) gate operations.

The Trotter complexity of the single-particle algorithm
presented scales linearly with volume, similar to that of
the field-operator-based strategy in [45,55,84]. A meaningful
comparison between the approaches will depend on the prob-
lem under consideration. Determining the precision required
to quantum simulate a simple scattering process, including
taking the continuum limit, both in terms of the qubit rep-
resentation of states and in the accuracy of the time evolution
operator, will require a detailed numerical study using larger
systems.

Moreover, error mitigation techniques [91,115] need to
be applied should one attempt a quantum simulation with
presently available devices. This is particularly important for
the scheme presented because the size of the unphysical
Hilbert space of non-Bose-symmetric states grows with M.
This is similar to the problem of quantum simulating gauge
theories where simulation errors may drive the system away
from the physical Hilbert space defined by the Gauss law.
It has been suggested that one can detect such violations of
symmetries without compromising the information encoded
in the system and thereby correct for them [116–120].

C. Measurement

In the spacetime picture of S-matrix scattering developed
thus far, we first discussed the preparation of wave packets in
the interacting theory by adiabatically turning on the interac-
tion over a timescale τ0. After this timescale, the wave packets
overlap and interact over a timescale τI , determined given by
their spatial overlap. We will discuss here the algorithm for
the measurement process subsequent to the scattering.

After the scattering, the wave function of the system can be
written in the most general form14

|�(t )〉 =
∑

�

α�(t )|��〉

≡
∑

basis states

α(q,q′,... )(t )√
N(q,q′,... )(t )

[|q, q′, . . . , �〉 + symm],

(47)

with unknown coefficients α(q,q′,... )(t ). Here “symm”
denotes Bose-symmetric permutations and N(q,q′,... ) ≡
M!/[n�!

∏
q nq!] is a generalization of the Bose-symmetric

factor N introduced in Sec. IV A for the M single-particle
registers, now also accounting for the possibility of degenerate
momenta among particle registers.

14The position space representation has an identical form and is
used interchangeably in the forthcoming discussion. In fact, when we
use the word “localized” here it can equally well mean “in position
space,” albeit the formulas we give are in the momentum space
representation.

Upon measurement of all qubits,15 the wave function in
Eq. (47) will collapse to a state with well-defined particle
number for every mode q (a Fock state) with probability
|α(q,q′,... )|2. Despite this, it is important to note that Eq. (47)
does not imply any kind of localization or clustering of the
particles measured in a detector, if measured at t = τ0 + τI .
One may further evolve the system over a time τ f during
which one turns off the interaction slowly to avoid interactions
between separated wave packets16 until one ends up with
localized particles over macroscopic scales that are theory
specific. These are then straightforward to measure due to
Eq. (47).

Measurements of identical Bose particles, with different
orderings among the particle registers, are physically equiv-
alent. Up to kinematic factors, this measurement defines the
differential cross section

ddnσ

dd p0 . . . dd pn

(48)

of n = ∑
q nq particles for a given outcome. From this per-

spective, running the quantum computer multiple times is very
similar to accumulating events in an actual particle physics
experiment, followed by a classical analysis of events. How-
ever, on the quantum computer, every outcome allowed by
energy-momentum conservation, as well as other conserved
quantities corresponding to symmetries of the system, is con-
tained in the state (47). For example, one can simply measure
only occupancy qubits, but not their corresponding momen-
tum counterparts, to obtain an integrated cross section,

σn ≡
∫

dd p0 . . . dd pn

ddnσ

dd p0 . . . dd pn

, (49)

directly. Similarly, in more complicated theories, one can in-
troduce single-particle registers with qubits corresponding to
electric charge, spin, or color and directly project on to desired
values of these for a specific measurement.

One can also instruct the quantum algorithm to impose
kinematical cuts such as measuring localized particle num-
ber in some region p ∈ [pmin, pmax]. To achieve this, one
requires 2d auxiliary registers [of size log2(V )] set to kine-
matic bounds pmin/max in d dimensions. One further requires
a unitary comparator circuit [121–123] [using log2(V ) an-
cilla qubits and O(log(V )) gate operations] which computes
whether pi � pmax

i and pi � pmin
i (i = 1, . . . , d) and stores the

information in 2d ancilla qubits with outcome |11〉⊗d if the
momentum is within the kinematical range. This provides a
way to efficiently split the Hilbert space into two nonoverlap-
ping regions while tagging each component of the final state
|�l〉 accordingly. As a consequence, techniques like (Oblivi-
ous) Amplitude Amplification [91,99–101,124,125] might be
employed to boost the probability of measuring the rare final
state that satisfies the kinematical cuts imposed. Alternately,

15This is to be contrasted with the procedure in [44,45] where
particle number measurement requires additional gate operations.

16Obviously, one can go beyond this picture by extracting informa-
tion on the scattering process through measurements at any time, as
we shall discuss below.
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generalizing to other theories, one can use this method to
identify states with unusual particle number content.

We note, however, that the regime at λ = 0, and that of its
physical value, may not be adiabatically connected because
the spectrum of the latter may consist of bound states. In this
case, one omits the evolution over a time τ f where one turns
off the interaction and instead should keep the interaction time
τI long enough to include the physical time it takes to form
such a bound state. One example where the spectrum of the
free and interacting theory are not adiabatically connected
is that of QCD. While color-charged quark and gluon states
arguably form a good basis to represent the proton wave
function at high energies and short time intervals, at large
distances and time intervals they are not contained in the
physical spectrum because of the confinement and deconfine-
ment phase transition, as is manifest in the dynamical process
of hadronization and fragmentation between these regimes
[126–129]. Such difficulties are also present in a field-based
digitization, and explicit numerical analysis is required to
investigate how well the proposed basis can approximate such
states in the continuum limit.

As we discussed previously, the minimal timescale for the
formation of a bound state is the Wigner time delay; for a
discussion of resonance formation in the S-matrix picture, see
[61]. Once this is done, and bound states are sufficiently sepa-
rated, one can make local measurements of quantum numbers
such as particle number or momentum (electric charge and
spin can also be measured in more complicated theories, for
example), the operator for the latter defined as

Pi
Ṽp

≡
∫
Ṽp

dd p pi a†
pap, (50)

where i = 1, . . . , d and Ṽp stands for a region in momentum
space. Its expectation value can be obtained using variants of
the phase estimation algorithm (PEA) [130–133]. The idea
is to act on the state with U ≡ exp (−iPi

Ṽp
) to determine the

operator expectation value 〈Pi
Ṽp

〉. The PEA determines, with

high probability, this expectation value to within precision ε.
It requires extra O(log(ε−1)) ∼ O(log(V )/d ) ancilla qubits17

and O(log(ε−1)) applications of the controlled-U operations.
In our digitization scheme, it is straightforward to obtain 〈Pi

Ṽp
〉

because the circuits of Sec. IV B 1 can be applied with small
modifications. Concretely, one replaces ωp by pi in this algo-
rithm and also uses a comparator circuit to check if pi is in Ṽp
controlling the execution of the circuit.

Likewise, the energy operator, restricted to Ṽp, is

HṼp
≡
∫
Ṽp

dd p Hp =
∫
Ṽp

dd p H0,p +
∫
Ṽp

dd p HI,p, (51)

where H0,p and HI,p are the Fourier transforms of the Hamilto-
nian densities H0,x and HI,x, with H0 = ∫

dd x H0,x and HI =∫
dd x HI,x. One can measure the contribution to the expec-

tation value 〈HṼp
〉 from the first term just as in Eq. (50). To

17We require that the precision of the PEA should be the same as
that for the momentum space discretization.

obtain the second term, we write∫
Ṽp

dd p HI,p =
∫

dd p HI,p θṼp
(p), (52)

where θṼp
(p) is a (smooth) envelope function restricting the

integrand to Ṽp. To illustrate the procedure, we now assume
for simplicity that θṼp

(p) is a sharp envelope function, e.g., a
d-dimensional box function with equal length, i.e., θṼp

(p) = 1

if p ∈ Ṽp and zero otherwise, where Ṽp ≡ (Lp)d is centered at
some p̄. We can make use of the Fourier convolution theo-
rem to compute this term. First, using the momentum space
translation operator introduced in Sec. IV A, we translate the
state such that Ṽp is centered around zero. After performing
the squeezing and Fourier transformations discussed in Secs.
IV B 2 and IV B 3, Eq. (52) can be written as∫

dd x HI,x g(−x), (53)

where the Fourier transform of the box function (centered
around zero) is real, g(x) ≡ (2π )d/2 ∏d

i=1
sin(xiLp/2)

xi
. The PEA

[130–133] can be applied again, replicating the algorithm of
Sec. IV B 4, albeit with the replacement λ → λg(−x). For this
specific envelope function, the measurement has a gate com-
plexity of O(VM4 poly log(V )). A sharp envelope function is
not ideal because it requires evaluating also the side-bands of
the sin(x)/x function. In practice, one should use a smooth
cutoff function, whose Fourier transform is known analyt-
ically or numerically, which falls off exponentially. In this
case, the estimate will depend only on the much smaller
subvolume Vx ⊂ V over which the Fourier transform of the
envelope function is supported, instead of the full volume
V . Similar algorithms are applied to compute energy and
momentum densities restricted in position space.

In general, being able to control the wave function of a
many-body system at any time t one can in principle follow
the entire spacetime evolution of a particular collision system,
instead of measuring just its asymptotic outcome, and thereby
obtain snapshots of the collision process. This is important for
systems such as ultrarelativistic heavy ion collisions where
the primary interest lies in the thermalization and hydrody-
namization of the produced matter [25] as opposed to the
asymptotic final states. Likewise, following Feynman’s idea
of quantum simulating a particle physics experiment in its
entirety, having full control over the time evolution allows
one to measure arbitrary (nonequal time) correlation functions
directly. (See also [134] where this point is discussed.) This
will allow for a more direct comparison with current theo-
retical efforts such as computing parton distribution functions
[38] or hadronic and Compton scattering amplitudes [70] from
correlation functions.

Moreover, quantum computation allows one to address the
question of entanglement in nuclear physics [135] and in high-
energy physics. With regard to the latter, the single-particle
basis described here may be useful to quantify entanglement
between partons as probed in DIS experiments [136–139],
its role in thermalization of the quark-gluon plasma, in
hadronization [140–142], or in the composition of the proton’s
spin [143,144].
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D. Renormalization

The renormalization of quantum fields to absorb the ap-
parent infinities that appear in computations is a fundamental
feature of quantum field theories. It is therefore important to
understand how to treat this problem in the real time Hamil-
tonian description of the evolution of quantum fields and its
implementation on a quantum computer. More specifically,
we need to understand how to implement the renormalization
group for scattering problems in our single-particle frame-
work.

We begin our discussion with a general overview of the
renormalization group procedure in the Hamiltonian formal-
ism. We will illustrate this picture in perturbation theory.
We argue, however, that nonperturbative renormalization is
essential to ensure one does not vitiate the reduction in com-
putational complexity presented by quantum computations
relative to classical approaches. We will therefore outline a
concrete nonperturbative scheme closely paralleling the cor-
responding procedure in classical lattice computations in the
(Euclidean) path integral formalism.

1. Operator formulation

The renormalization of quantum fields and operators re-
quires finding a Hamiltonian for the effective field theory of
interest (defined with an ultraviolet cutoff) concretely through
a lattice discretization as well as the truncation of the Hilbert
space imposed by a given digitization scheme. Since renor-
malization in the Hamiltonian operator formalism has been
developed extensively [145], as well as its applications to
single-particle strategies [146–148], we will outline only the
relevant ideas in the context of this work. Working in the
computational basis (the eigenbasis of the free Hamiltonian
H0) introduced in Sec. III, we can write the Hamiltonian in
the block form

H =
(

Hll Hlh

Hhl Hhh

)
. (54)

The matrix elements in this representation are between states
with energies E = ∑

p ωpnp, either below (l ) or above (h) a
cutoff �.

A renormalization group (RG) transformation consists of
the similarity transformation

H eff ≡ T HT †, (55)

where T ≡ exp (iη) block-diagonalizes H , eliminating matrix
elements between the low- and high-energy sectors such that
H eff

ll in the new basis defines a low-energy effective field
theory.18 The generator η of this similarity transformation is
not known a priori. It can, however, be constructed to realize
a nonperturbative RG, the so-called similarity RG [145], by
integrating out one energy shell at a time in infinitesimal steps.
This point is discussed further in Appendix F.

18Note that a self-consistent formulation of the S-matrix in this
picture may provide deeper insight into ambiguities regarding the
elementarity of the degrees of freedom included in the EFT [61]. For
a recent discussion, see [149].

If the coupling is small enough, perturbative renormal-
ization is applicable. This procedure is very familiar to the
high-energy physicist in its Lorentz covariant path integral
formulation; in the Hamiltonian operator picture, it is best
illustrated through a Schrieffer-Wolf transformation, as dis-
cussed in [150] and worked out in Appendix F. As is shown
there, this allows us to systematically derive low-energy ele-
ments of Heff and of any other operator order by order in λ.

However, it is not difficult to see that doing so comes
with a factorial increase in the computational complexity,
just as the number of Feynman diagrams grows factorially
with loop order in a path integral formulation. Moreover
such a perturbative computation will break down if there is
a phase transition in λ, as is likely for D = 2, 3 for scalar
φ4 theory; for QCD, this expansion will be problematic for
quantum simulations that attempt to treat hadronization of
parton single-particle degrees of freedom.

Therefore to match the quantum advantage of the renor-
malization procedure with that of the nonperturbative formu-
lation of the rest of our treatment of the scattering problem,
we will outline below a practical scheme to nonperturbatively
renormalize the theory on a quantum computer.

2. Nonperturbative renormalization scheme

We begin by outlining how exactly renormalization enters
our algorithm. As shown in Fig. 1, the algorithm includes a
turn-on of interactions from a free (but unphysical) theory at
t = 0, where the initial state can be prepared, to the interacting
(physical) theory at t = τ0 with time-dependent Hamiltonian
H (t ) = H (λ(t ), m(t )).

It is only the couplings in the physical Hamiltonian at t �
τ0,

λ(τ0) = λren, m(τ0) = mren, (56)

that are to be determined by a renormalization group pro-
cedure which we outline below. The “unphysical” theories
defined by H (t ) = H (λ(t ), m(t )) at t < τ0, including the
initial values

λ(0) = 0, m(0) = m0, (57)

are not renormalized because there is simply no physical
renormalization for them. Instead, one simply works with a
linear interpolation

λ(t ) = λren t

τ0
, m(t ) = m0

(
1 − t

τ0

)
+ mren t

τ0
, (58)

for t ∈ [0, τ0] and constant thereafter. From a practical per-
spective, the unknown parameter m0 may be chosen to
represent a relevant energy scale in the weakly coupled regime
of the theory such as, for example, the bare quark mass in
QCD. However, if the system undergoes a phase transition
during this turn-on procedure, the mass and energy scales of
the weakly and strongly coupled regimes of the theory are
very different (as is the case in QCD), requiring large lattices
to resolve both regimes.

We now turn our attention to determining the renormalized
values for the bare parameters λ(t ) and m(t ) at t � τ0. We will
assume form invariance of the Hamiltonian of the form (11)
for all values of lattice spacing as and particle number cutoff
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M. In other words, we do not add dimensionful operators
that would be generated by the similarity transformation in
Eq. (55). (These could in principle improve the convergence
to the continuum limit.)

To renormalize the Hamiltonian operator, it is sufficient to
perform the computation of a static property and then use the
result as the input for the computation of a scattering pro-
cess.19 The nonperturbative renormalization strategy consists
of the following steps:

(1) First, one quantum computes a static and dimen-
sionless physical quantity such as the energy ratio of two
low-lying excitations at a given as and M. One then repeats
the computation adjusting the bare parameters λ, m so that the
physical value is reproduced for that as and M. We will not
discuss the details of such computations here but note that
algorithms20 to do so can be applied to our single-particle
digitization.

(2) One then repeats the computation at a somewhat dif-
ferent as, M along the direction as → 0 and M → ∞, and
adjusts the values of λ, m so that the aforementioned physical
quantity does not change.

(3) One repeats this computation for various as, M along
a line of constant physics. Because there are now two di-
rections (as, M ), this procedure is in principle ambiguous.
In practice, however, it should be subject to an optimization
procedure identifying the most relevant RG direction, such as
determined by a steepest decent approach. We will not discuss
such a procedure here.

(4) Once the renormalized values λren and mren are known
for a range of (as, M ), one performs the scattering experiment
outlined in this paper with these values as input. This also
includes the renormalization of operators 〈Oeff〉 measured in
Sec. IV C such as particle number, momentum, and energy
density. In the simplest case, one sets O = ZOeff and deter-
mines Z in the same way as for the bare λ and m.

(5) Finally, one performs a continuum extrapolation of
the observables obtained in the scattering experiment. This
dynamical problem will require determining the λren, mren, and
Z over a large range (as, M ), which is likely computationally
demanding even with a quantum computer.

This procedure is similar to the Luscher formalism that
relates energy differences between static long-lived states and
S-matrix elements. Extracting the latter from the former is
in general an inverse scattering problem and a number of
sophisticated techniques have been developed in this regard
[157]. A potential advantage of the quantum computation is
that both sides of the Luscher relation can be computed in real
time; realizing this in practice is of course very challenging.

19A caveat here is that since the scattering process likely covers
a larger range of scales, the continuum extrapolation of the cross
section is more challenging than that of the low-energy spectrum.

20Examples of such algorithms include variational approaches
[151,152], adiabatic state preparation with quantum phase estimation
[153,154], quantum approximate optimization [151,155], quantum
imaginary time and quantum Lanczos algorithms [156], and efficient
operator averaging techniques [130–133].

V. SUMMARY AND OUTLOOK

In this work, we developed a single-particle digitization
strategy for the quantum simulation of scattering in a relativis-
tic scalar φ4 field theory in d dimensions. The essence of this
picture is a relativistic generalization of a single-particle pic-
ture consisting of M “particle registers” whose Hilbert space
spans states over a volume V . Our approach is nonperturbative
and fully general and may offer a quantum advantage over
other digitization strategies for a class of interesting physical
problems that are challenging to address with purely classical
methods.

The conceptual elements of this framework are outlined in
Secs. II and III. We developed quantum circuits for the initial
state preparation of scattering wave packets in Sec. IV A, their
time evolution through the scattering process in Sec. IV B, and
the subsequent measurement of final states in Sec. IV C. We
sketched in Sec. IV D the elements of a nonperturbative renor-
malization strategy that must be implemented in the quantum
simulation to achieve physically meaningful results.

The overall gate complexity of the elements of a quantum
circuit for a scattering simulation are compactly summarized
in Table I. The initial state preparation requires O(Mn log(V ))
elementary gate operations, where n is the initial number of
particles (the simplest case being two-particle scattering with
n = 2), and O(log(Mn)) ancilla qubits. The algorithm may
become probabilistic, requiring additional measurements for
certain choices of n and M depending on Bose combina-
torics. A Trotter scheme is employed to separate the time
evolution operator into free and interaction parts; these are
evaluated respectively in momentum and position space repre-
sentations of the single-particle digitization basis. The change
of basis from the former to the latter is achieved through
a combination of squeezing and quantum Fourier transform
operations. The dominant cost of the algorithm is from the
O(M4V poly log(V )) gate operations per Trotter step required
to compute the interaction part of the time evolution operator.
We believe that one can improve the polynomial cost in the
number of registers M by improving the algorithm outlined in
Sec. IV B 4. This would open up a broader class of interaction
terms and theories that could be efficiently simulated within
this approach. The measurement of particle number incurs
no additional cost; the estimation of the localized momen-
tum and energy density (in a subvolume Vx ⊂ V), via the
phase estimation algorithm, requires O(Mpoly log (V )) and
O(M4Vxpoly log (V )) operations, respectively. We note that
some of the unitary operations in our circuit, such as the
squeezing operation or the diagonal phase multiplication used
in computing the φ4 interaction term, are available as native
gates in certain architectures such as circuit QED [158], po-
tentially improving their resource efficiency and facilitating a
near-term implementation of our strategy.

Apart from the Hilbert space truncation, sources of er-
rors in our algorithm are from the Trotterization of the time
evolution operator, and imperfect evolution of the qubits on
non-error-corrected devices. It should be possible to derive
rather tight bounds on the Trotter error, using similar tech-
niques as in [159], and it would be interesting to compare
them with [44,45]. Machine errors, such as bit flips, are im-
portant because, if they occur in a major bit of the momentum
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TABLE I. Cost of the circuit implementation discussed in this manuscript, assuming noiseless qubits. We use the following abbreviations:
number of particle registers M, volume V , occupied registers in initial state n, dimension d , and Trotter time steps t . (∗) If log2(M!/(M − n))
cannot be chosen integer, the initial state is prepared with probability psuccess > 1/2, depending on the choice of M and n. (∗∗) Measurements
of (localized) energy and momentum densities are via the phase estimation algorithm (PEA) [130–133]. The cost estimate for the localized
energy density includes a factor Vx ⊂ V denoting a small subvolume of the total V; see Sec. IV C.

Elementary gate operations Ancilla qubits

Initial state preparation O(Mn log (V )) psuccess = 1 [exact∗] log[M!/(M − n!)] [exact∗]
psuccess > 1/2 [probabilistic∗] O(log(Mn)) [probabilistic∗]

Time evolution Free part U0 O(Mpoly log (V ) t ) O(log (V )/d )
Squeezing transform S O(M2Vpoly log (V ) t ) 0

Quantum Fourier transform O(Mpoly log (V ) t ) 0
Interaction part UI O(M4Vpoly log (V ) t ) O(log(V )/d )

Total O(M4Vpoly log (V ) t ) O(log(V )/d )
Measurement Particle number 0 0

Momentum density O(M poly log (V )) (PEA∗∗) O(log(V )/d )
Energy density O(M4Vx poly log (V )) (PEA∗∗) O(log(V )/d )

or position of a particle register, they can change a position
or momentum eigenstate drastically. Such errors could be
protected using linear codes [160–162]. We also note that,
because the momentum or position information is entangled
over several registers in our (Bose-symmetric) digitization,
such errors will take the state into an unphysical regime and
can be detected easily. Whether this symmetry can be used to
correct or minimize errors will be explored in future work.

Our framework can be compared to the paradigmatic de-
scription of scattering on quantum computers by Jordan, Lee,
and Preskill (JLP) [44,45] which, in contrast, is based on
the digitization of field operators.21 Our digitization strategy
differs fundamentally from JLP and other field digitization
approaches since the number of degrees of freedom in our
approach scales linearly with the particle number (and as a
logarithm of the volume) as opposed to the linear scaling
with volume in the field digitization approach. However, the
logarithmic scaling in our approach holds only if the sys-
tem is dilute; for dense systems with high occupancy, one
recovers linear scaling or greater with the volume and the
single-particle strategy is no longer preferred. This is seen on
the algorithmic level when the required Bose or Fermi sym-
metrization creates a large overhead of unphysical or unused
states in Hilbert space. Because M ∼ V in such situations, the
cost for the time evolution operator would be significantly
higher, albeit still polynomial in volume, as can be inferred
from Table I.

The situation is analogous to the virial expansion we
discussed previously which breaks down for high-density sys-
tems. Thus just as the virial expansion is very useful for a
wide class of many-body problems, our single-particle ap-
proach may present a quantum advantage for a number of
physical problems. From a purely practical point of view,
the logarithmic scaling with volume of our approach will be
useful in benchmark computations for a class of scattering

21The implementation of the JLP program for scattering problems
has been discussed at length recently [84] and compared to an alter-
native digitization strategy employing a harmonic oscillator basis in
position or momentum space [90,163,164].

problems with NISQ era quantum hardware, where only few
tens to hundreds of noisy qubits will be available. A physics
application where our strategy may provide a quantum advan-
tage is the Feynman diagram approach to compute scattering
amplitudes at weak coupling. As pointed out in [44,45] a
quantum computation avoids the combinatorial complexity
with increasing precision that burdens classical computations.
Another appealing feature of our strategy is the relative sim-
plicity of initial state preparation and of the extraction of
inclusive cross sections; the latter, for instance, requires no
additional gate operations. Not least, the single-particle ap-
proach, as articulated in Sec. IV D, provides a transparent
realization of a nonperturbative renormalization scheme that
can simultaneously be used to fix lattice masses and couplings
from comparisons to static properties of the system and to
compute physically meaningful cross sections.

One can extend our strategy to fermionic theories and theo-
ries involving internal symmetries. For a fermionic theory, the
algorithm in Sec. IV A can be modified to produce antisym-
metrized wave functions and may offer a new fermion qubit
mapping that is useful in higher dimensions. Internal symme-
tries such as spin and color can also be realized via the strategy
discussed in [31]. For example, to realize a Dirac fermion
in 3 + 1 dimensions, one needs only to modify Eq. (14) to
include two extra fermionic degrees of freedom; these can
then be mapped on to two qubits by means of a Jordan-Wigner
transformation, thereby realizing the four-dimensional spinor
matrix space. Likewise, for color SU(3) in the fundamental
representation, only three extra qubits are required. Details of
the spin and extensions to SU(Nc) in arbitrary representations
are given in [31,134,144].

The theory can be nonpertubatively coupled to gauge
fields.22 An important consequence in doing so is that the
quadratic term of the Hamiltonian, whose implementation
is discussed in Sec. IV B 1, is not diagonal anymore. The
theory can be nonpertubatively coupled to gauge fields. An
important consequence in doing so is that the quadratic term

22For discussions of first principles quantum simulation of non-
Abelian gauge theories see [165–171].
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of the Hamiltonian, whose implementation is discussed in
Sec. IV B 1, is not diagonal anymore. Hence one would have
to develop an algorithm similar to that used for the interaction
term. A significant downside would be that one no longer can
work with the continuum dispersion relation in momentum
space but would instead have to use a lattice discretization of
the Laplacian operator in Eq. (11). This introduces larger dis-
cretization errors which are unknown in the strongly coupled
regime and are likely more severe than the cost of the squeez-
ing and quantum Fourier transformations that are avoided by
working purely in the coordinate space basis.

As a next step, we aim to perform a numerical study
focusing on the simplest case of d = 1 spatial dimensions.
While we work in the eigenbasis of the free Hamiltonian, we
will test, using exact diagonalization, how well the spectrum
of the theory can be reproduced in the interacting theory at
finite λ for given lattice discretization and M. This is similar
to what is done in [84] using the digitization of [44,45]. At
weak coupling, the results of such study can be compared with
lattice perturbation theory, unlike at strong coupling where the
analysis includes varying M and V over a wider range, hoping
for eventual convergence.

Next, one could classically compute our algorithm within
the simplest case of M = 2 in d = 1 dimensions with Ns = 8
(16) lattice sites. This would correspond to a quantum simula-
tion with 8 (10) qubits, plus an overhead of ancilla qubits. An
important motivation for such a study would be to quantify the
consequences of the violation of Bose symmetry by injecting
errors into the simulation.

With this as benchmark, we plan to implement elements
of our circuit on available quantum hardware, starting in the
simplest case of M = 2 in d = 1 dimensions, which we as-
sume can be done using lattices up to Ns ∼ O(8) sites. While
negligible for large systems, the overhead from ancilla qubits
is a significant part of the computational budget for such a
small number of sites. Preparing the Bose-symmetrized initial
state is already a nontrivial task involving entangling the two
particle registers. To implement the time evolution algorithm,
a quantum algorithm for the oracle to compute the single-
particle energy ωq from the momentum q has to be devised
for the free part of the time evolution operator U0. While it
is certainly possible to come up with an efficient circuit for
ωq, a simpler strategy would be to simulate U0 in position
space albeit with a lattice discretized Laplacian operator. The
resulting complexity of O(V ) versus O(log(V )) would hardly
make a difference on lattices this small.

Finally, we should mention that we see important appli-
cations of our single-particle basis digitization strategy to
quantum computing scattering cross sections, nuclear struc-
ture functions and jet fragmentation functions probed at
high-energy collider experiments such as the Large Hadron
Collider, the Relativistic Heavy Ion Collider and the upcom-
ing Electron-Ion Collider [172]. A single-particle basis may
also be useful to quantify the role of entanglement in high-
energy and nuclear physics, for example, between partons
probed in DIS experiments [136–139], the evolution of en-
tanglement during the parton fragmentation process [140,141]
and its role in the composition of the proton’s spin [143].
We also see novel applications of this approach [49,173] to
systems in high-energy nuclear and particle physics that can

be described by hybrid quantum and classical dynamics such
as QCD in the Regge limit [82] and the thermalization dy-
namics of the quark-gluon plasma in ultrarelativistic heavy ion
collisions [25,174–176].
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APPENDIX A: SINGLE-PARTICLE DIGITIZATION
SCHEME

In this Appendix, we provide additional details on the
single-particle digitization strategy introduced in Sec. III,
based on mapping single-particle states to a chain of spins
(14)–(16), where

a†
q ≡ 1√

M

M−1∑
i=0

a(i)†
q , (A1)

and similarly for aq. Here a(i)†
q , a(i)

q are “hard-core boson”
creation (annihilation) operators which can be written as a
product of spin raising (lowering) operators S± = 1/2(σ x ±
iσ y). A simple example is a digitization with N = 4 qubits per
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particle register in d = 1 dimensions, where there are eight
“occupied” states with q ∈ [−7/2, 7/2],

| ± 1/2〉 ≡ |↓↓; ↑/↓; ↑〉, | ± 3/2〉 ≡ |↓↑; ↑/↓; ↑〉,
| ± 5/2〉 ≡ |↑↓; ↑/↓; ↑〉,
| ± 7/2〉 ≡ |↑↑; ↑/↓; ↑〉, (A2)

and the empty state |�〉 = |↓↓; ↓; ↓〉. Fock operators are then

a(i)†
−1/2 ≡ S+

0 , a(i)†
−3/2 ≡ S+

2 S+
0 ,

a(i)†
−5/2 ≡ S+

3 S+
0 , a(i)†

−7/2 ≡ S+
3 S+

2 S+
0 , (A3)

where a(i)†
+|q| = S+

1 a(i)†
−|q|. We label the k = 0, . . . , 3 qubits from

right to left so that k = 0 labels the occupation number qubit,
k = 1 the sign qubit and k = 2, 3 are the binary decomposi-
tion of |q|. We use the identical map for states in the position
representation.

One can check that a(i)†
q |�(i)〉 = |q(i)〉 and (a(i)†

q )2 =
(a(i)

q )2 = 0. Using Eq. (A1), one can also show that [a†
q, a†

q′ ] =
[aq, aq′ ] = 0 and

[aq, a†
q] = 1

M

M−1∑
i=0

[{
a(i)

q , a(i)†
q

}− 2a(i)†
q a(i)

q

] = 1 + O

(
nq

M

)
,

(A4)

where 1 is a unit matrix in the space spanned by |q〉 and |�〉,
as well as [aq, a†

q′ ] = O(nq/M ) where nq is the occupation
number of the mode q.

APPENDIX B: DETAILS OF STATE PREPARATION

We will present here details of the initial state preparation
algorithm in Sec. IV A. We begin by discussing the prepa-
ration of a wave packet superposition via the algorithm of
[101,102] and contrast it with a simpler, albeit less general,
variant. For simplicity, we work in d = 1, and use the standard
binary representation, not the “inverted” one used in the main
text. Assuming a symmetric distribution in momentum, the
first Hadamard operation on the sign qubit creates and equal
superposition of negative and positive momenta. Below we
illustrate the algorithm acting on the qubits representing the
absolute value of momentum p.

Starting from a fiducial state with all the qubits in |0〉, our
algorithm applies the (per qubit) operation23

|0〉 → cos θk|0〉 + sin θk|0〉 (B1)

for all k = 0, . . . , nQ − 1 qubits, so that to each |1〉 gets mul-
tiplied with a sine and to each |0〉 with a cosine. Then the final
state (for nQ qubit) reads

|0, 0, · · · , 0〉 →
2nQ −1∑

p=0

{nQ−1∏
k=0

[
cos(1−pk )(θk ) sin(pk )(θk )

]}|p〉

=
2nQ −1∑

p=0

ψp|p〉 ≡ |�〉, (B2)

23We now work in the standard binary representation.
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cubic

FIG. 10. Induced distributions for ψp using the above poly-
nomial maps. For comparison, we additionally plot an off-set
exponentially decaying distribution, with σ = 100.

where |p〉 here stands for the nQ qubits storing the absolute
value of a single particle and pk ∈ {0, 1}.

Adjusting the map k → θk classically, one can reproduce a
wide range of distributions. For example, choosing θk = π/4
up to some k′ and θk = 0 thereafter would produce a step
function. While this distribution is localized (in momentum
space), its Fourier conjugate is sin(x)/x (in position space),
which falls off only polynomial, and is thus undesired.

One can, however, produce sufficiently smooth distribu-
tions that fall off exponentially in position and momentum
space. Simple examples of this are shown in the figure below,
where for illustration we have chosen the following maps:

θ linear
k = π

4
− ε + 2ε − π

4

nQ − 1
k, (B3)

θ
quadratic
k = π

4
− ε+

(
2ε − π

4
− c0(nQ − 1)2

]
k

nQ − 1
+c0k2,

(B4)

θ cubic
k = π

4
− ε +

[
2ε − π

4
− c1(nQ − 1)2 − c2(nQ − 1)3

]

× k

nQ − 1
+ c1k2 + c2k3. (B5)

The ci parameters are adjusted such that the resulting dis-
tribution is smoothed (in the sense of having less and
smaller peaks); we took c0 = −0.01325, c1 = −0.0195, c2 =
0.0005905, the numerical regulator ε = 0.015 and nQ = 10.
These maps are fixed at the initial point p = 0 where θ0 =
π/4 − ε and θnQ−1 = ε is the smallest possible value. The
resulting distributions decay exponentially, ∼exp(−p/σ ) as
was desired. We note that the use of these simple low order
polynomials leads to a roughness of the curves, which can be
smoothed by use of higher order polynomials as is shown in
Fig. 10.

While the analytic maps (B3)–(B5), which we worked out
with pen and paper, provide some insight, in practice one
would use a (classical) numerical optimization procedure to
determine the optimal map, without assuming a functional
form, for a given target distribution. In this case, the difference
of our approach to that of [101,102] is that the angles θk are
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determined simultaneously (“globally”) while in [101,102]
they are determined sequentially (the latter also requiring
controlled operations). Our motivation for this “classical out-
sourcing” was the relative simplicity of our approach over
that of [101,102] in light of available near-term resources.
However, being satisfied with our approach producing distri-
butions relevant for our problem, we do not know if it is also
capable of producing more general distributions realizable
with [101,102]

We continue here with details of the Bose-symmetrization
procedure discussed in Sec. IV A. The idea behind the al-
gorithm is to start from an unsymmetrized state, work out
all permutations of particle registers that together give the
symmetrized state (a simple combinatorial problem) and then
use an ancilla register in a Bell superposition. Every state in
this superposition is interpreted as the binary representation
of a number labeling the respective Bose permutations of the
initial unsymmetrized state. Each combination may then be
used as the control qubits to execute a unique swap operation.

A simple but nontrivial example is the case of n = 2
initial wave packets in M = 3 registers, where the Bose-
symmetrized state, obtained from the initial unsymmetrized
state |�,�1, �0〉, reads

1√
6

[|�,�1, �0〉 + |�,�0, �1〉 + |�0, �1,�〉 + |�1, �0,�〉

+ |�0,�,�1〉 + |�1,�,�0〉]. (B6)

Following the recipe given in the main text, the number of
possible Bose permutation for this M and n is not a power
of two. Using s = 3 ancilla qubits in a Bell superposition in
fact gives 23 = 8 different permutations. Because of this the
following state is generated:

|�,�1, �0〉

→ 1√
8

[|�,�1, �0〉 |0, 0, 0〉 + |�,�0, �1〉 |0, 0, 1〉

+ |�0, �1,�〉 |1, 0, 0〉 + |�1, �0,�〉 |1, 0, 1〉
+ |�0,�,�1〉 (|0, 1, 1〉 + |1, 1, 0〉)

+ |�1,�,�0〉 (|0, 1, 0〉 + |1, 1, 1〉)], (B7)

where states |�0,�,�1〉 and |�1,�,�0〉 are now twice as
likely as any other state. These unwanted permutations can
be eliminated by introducing a single ancilla |0〉, and flipping
it to |1〉 if either |1, 1, 0〉 or |1, 1, 1〉 is detected by a simple
controlled σ x gate. If the ancilla is then measured in the |0〉
state, Eq. (B7) collapses onto Eq. (B6) with probability given
by ratio of the number of desired terms in Eq. (B7) to the total
number of states, in this specific example psuccess = 6/8.

Note that although the number of basic gate operations
depends on the number of measurements one needs to perform
in order to eliminate all undesired states—in the previous
example at least two—psuccess depends only on {n, M}. In the
example above, if each of the two undesired states had been
eliminated separately, the probability of preparing the correct
symmetrized state would be psuccess = (7/8) × (6/7) = 6/8,
as promised. In general, it is easily recognized that

psuccess = N
2s

>
1

2
, (B8)
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FIG. 11. Probability of preparing the correct Bose symmetric
state psuccess as a function of the number for single-particle registers
M, for n = 2 (top) and n = 6 (bottom) initial single-particle states.
The graduation in color between red and green is to guide the eye
from low (≈0.5) to high (≈1.0) success probability; vertical dashed
lines indicate values of M that maximize psuccess.

with N = M!/(M − n)! the number of Bose permuta-
tions one needs to generate and s an integer such that
2s is the closest power of two to N from above, s =
�log2(M!/(M − n)!)� = O(log(Mn)).

In Fig. 11 we give some values for n = 2 and n = 6 as a
function of M, with 6 being the number of “particles” one
would need to represent the quantum numbers of the proton
in an extension of this work. Shown is the total probability
of success for given choices of M, with the graduation in
color from red to green guiding the eye from low (≈0.5)
to high (≈1.0) probability. One would like to choose M as
large as possible, to minimize truncation effects, but this may
not always be possible due to limited resources. However, as
indicated by vertical dashed lines, one can always choose M
optimally in a reasonable range, so that psuccess is maximized.

The next step is to uncompute the s ancilla qubits, as de-
scribed in the main text. For n = 2 this can be done using the
occupation number qubit, as well as sign qubit, because the
initial wave packets have opposite momentum in order to be
able to interact. The major difference for n > 2 is that it is not
sufficient to use only sign and occupation number qubits alone
to uncompute the ancilla qubits. In this case, one must also use
r of the qubits making up the momentum q (or position x after
the respective transformation). Because the wave packets are
assumed widely separated, a small number of qubits should
suffice to uncompute the ancillas. The cost of uncomputing
the ancillas would increase from O(Mn), to ∼O(Mnr) �
O(Mn log(V )), where r � log2(V ) is the number of qubits
representing the momentum/position of each wave packet
which differ uniquely from each other. One then uncomputes
the s′ � s ancillas that are in the |1〉 state. Since one can
choose s′ to be very small (compared to s) its contribution
to the overall scaling estimate is subleading. Overall, the al-
gorithm uses s Hadamard gates to prepare the ancilla register,
and O(2s logV ) ∼ O(Mn logV ) controlled swap operations,
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FIG. 12. Circuit implementing the final step in the time evolution dictated by H0. The first Sϕ gate contributes with Sϕ to the phase, while

the last M gates contribute only if controlled by a particle register in the vacuum state, thus generating the term proportional to n� in the phase.

and the uncomputation of the ancilla register requires O(Mn)
operations; the overall gate complexity is O(Mn logV ).

APPENDIX C: DETAILS OF THE KINETIC TERM

In this Appendix, we discuss the implementation of the
gates ω and S1+n�

ϕ
, necessary for the algorithm introduced

in Sec. IV B. The gate ω takes as an input two registers,
one of which is a particle register |q〉 and the other an ancilla
register of l qubits in the state |0⊗l〉. Under the action of this
gate, the state |q〉 ⊗ |0⊗l〉 transforms to |q〉 ⊗ |ωq〉. Assuming
that an efficient classical algorithm exists to compute ωq for
any q, and ensuring that for |�〉, ω� = 0 (using the occupation
number qubit as control), we treat ω as a quantum oracle.
The gate implementing Eq. (28) is given in Fig. 12 and con-
sists of the sequential application of single controlled gates
Sϕ which takes the state |ψ〉 ⊗ |ϕ〉 to exp (−i δ

M ϕ) |ψ〉 ⊗ |ϕ〉.
This set of operations uses conditional single qubit phase

shift gates Cφ [91,177], with matrix representation

Cφ ≡
(

1 0
0 eiφ

)
, (C1)

where φ = − δ
M 2d (0 � d � l − 1) chosen accordingly to the

binary decomposition of ϕ. The full multiqubit gate is con-
structed as a product of single qubit gates.

APPENDIX D: DETAILS OF THE SQUEEZING
TRANSFORMATION

In this Appendix we will show that the operator S realizes
Eq. (31). First, note that

SaqS† =
∏
p,p′

e−zp(a†
pa†

−p−a−pAp )aqez′
p(a†

p′ a
†
−p′−a−p′ ap′ )

. (D1)

Taking into account that ap and a†
p obey the canonical com-

mutation relations, Eq. (D1) takes the form

eX aqe−X =
∞∑

k=0

1

k!
[X, [X, . . . [X, aq]]︸ ︷︷ ︸

k times

. . . ], (D2)

where X ≡ −zq(a†
qa†

−q − a−qaq). Using the simple identities

[X, aq] = zqa†
−q, [X, a†

−q] = zqaq, (D3)

it follows directly that for zq < 0,

eX aqe−X =
∞∑

k=0

(zq)2k

(2k)!
aq +

∞∑
k=0

(zq)2k+1

(2k + 1)!
a†

−q

= cosh(zq)aq + zq

|zq| sinh(zq)a†
−q. (D4)

In the implementation of the squeezing operation intro-
duced in the main text, we made use of the bit incre-
ment operator IN, that performs the transformation | j〉 →
| j + 1 (mod 2N)〉, where | j〉 = | j0, j1, . . . , jN−2, jN−1〉 and
ji ∈ {0, 1} for any i. A decomposition of IN in terms of usual
quantum gates is given in Fig. 13; an alternative formulation
is given in Eq. (47) of [114].

The implementation of IN in terms of Fig. 13 uses the
fact that unitary increments in the binary basis consist in con-
secutively flipping all qubits, i.e., |0〉 → |1〉 and |1〉 → |0〉,
while keeping track of the first time the state |0〉 is given as
an input qubit. To do this, a flag ancilla qubit is prepared in
the |1〉 state and it is flipped back to |0〉 only just after one
performs the transformation |0〉 → |1〉 (on an input qubit); all
possible remaining qubit flips are skipped. This operation is
performed by the circuit detailed to the left of the vertical red
line in Fig. 13. In the end, one uncomputes the ancilla back
to the state |1〉 via a single σ x gate. The special (boundary)
case |1, 1, . . . , 1〉 ⊗ |1〉 → |0, 0, . . . , 0〉 ⊗ |1〉 has the ancilla
uncomputed by the last gate in the diagram shown.

FIG. 13. Circuit implementing the bit increment operator IN, introduced by Kaye [178,179]. The number of elementary quantum gate
operations required scales as O(N2) for N � 3, leading to the polylogarithm scaling mentioned in the main text.
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APPENDIX E: DETAILS OF THE INTERACTION TERM

In this Appendix, we will discuss how to explicitly con-
struct the operator U diag

I,n . We illustrate the algorithm for the
simplest example n = −1/2 and M = 4. The generalization
for all n and M is discussed below.

For this simple example, φ
(i) diag
−1/2 is simply the σ z operator

acting only on the occupancy qubit of register i; see Eq. (A3).
For M = 4, U diag

I,−1/2 acts only on the respective occupancy
qubits of the four particle registers. Using the fact that (σ z )2 =
1, we can write U diag

I,−1/2 as

U diag
I,−1/2 ≡ exp

{
−i�

2∑
s=0

cs,−1/2Os,−1/2

}
. (E1)

The three distinct operators appearing in Eq. (E1)
are O0,−1/2 = 1⊗4, O1,−1/2 = (σ z )⊗4, and O2,−1/2 =
P� (1 ⊗ 1 ⊗ σ z ⊗ σ z ), with coefficients c0,−1/2 = 4!(4 + 12),
c1,−1/2 = 4! and c2,−1/2 = 4!(2 + 1). Here P� (X̂ ) stands for
the sum over all permutations of the operator X̂ in the tensor
product. Each operator is simply a product of standard Pauli
z-rotations [91]. The generalization of Eq. (E1) to arbitrary
n (and M) requires replacing σ z by its higher dimensional
analog, given in Sec. IV B 4. For M > 4 one has to repeat the
algorithm for all M(M − 1)(M − 2)(M − 3)/4! ∼ O(M4)
possible four-tuples formed out of M registers.

APPENDIX F: DETAILS OF THE RENORMALIZATION PROCEDURE

In this Appendix, we present some details of the renormalization procedure. Concretely, for weak coupling Eq. (55) can be
expanded as

H eff = H + [iη, H] + 1

2!
[iη[iη, H]] + · · · = H0 + HI + [iη, H0] + [iη, HI ] + 1

2
[iη, [iη, H0]] + O(λ3), (F1)

where H = H0 + HI and HI ∼ O(λ), η ∼ O(λ). We label eigenstates H0|α, i〉 = Eα,i|α, i〉, where α = l, h denote low- and
high-energy sectors (the computational basis states of Sec. III). To block-diagonalize H such that 〈α, i|H eff |β, j〉 = 0 if α �= β,
we require that the diagonal elements of iη vanish, 〈α, i|iη|α, j〉 = 0, and we set 〈α, i|iη|β, j〉 = 〈α, i|HI |β, j〉/(Eα,i − Eβ, j ) for
α �= β. With this, the off-diagonal elements of H eff cancel to O(λ2). In this case, H eff = H0 + HI + 1

2 [iη, HI ] + O(λ3), with the
low-energy matrix elements given by

〈l, i|Heff |l, j〉 = 〈l, i|H |l, j〉 + 1

2

∑
k

〈l, i|HI |h, k〉〈h, k|HI |l, j〉
[ 1

El,i − Eh,k
+ 1

El, j − Eh,k

]
. (F2)

The same transformation applies to any operator Oeff = TOT †, which can be expressed as 〈l, i|Oeff |l, j〉 = 〈l, i|O|l, j〉 +
〈l, i|�O|l, j〉. For the matrix elements for an observable diagonal in the eigenbasis of H0 (such as particle number), this reads
as24

〈l, i|�O|l, j〉 =
∑

k

{ 〈l, i|HI |h, k〉
El,i − Eh,k

〈h, k|HI |l, j〉
Eh,l − El, j

1

2

[
Ol

j + Ol
i

]− 〈l, i|HI |h, k〉
Eh,k − El, j

Oh
k

〈h, k|HI |l, j〉
El,i − Eh,k

}
, (F3)

where we abbreviated 〈l, i|O|l, j〉 ≡ Ol
i δi j . The procedure outlined can in principle be continued to arbitrary order O(λn).

The generalization of Eq. (F3) to an operator that is not diagonal in the H0 eigenbasis is

〈l, i|�O|l, j〉 =
∑

k

〈l, i|HI |h, k〉
El,i − Eh,k

〈h, k|O|l, j〉〈l, i|O|h, k〉 〈h, k|HI |l, j〉
El, j − Eh,k

+ 1

2

∑
k,m

{
〈l, i|HI |h, k〉
El,i − Eh,k

〈h, k|HI |l, m〉
Eh,k − El,m

〈l, m|O|l, j〉

− 〈l, i|HI |h, k〉
El,i − Eh,k

〈h, k|O|h, m〉 〈h, m|HI |l, j〉
Eh,m − El, j

− 〈l, i|HI |h, m〉
El,i − Eh,m

〈h, m|O|h, k〉 〈h, k|HI |l, j〉
Eh,k − El, j

+ 〈l, i|O|l, m〉 〈l, m|HI |h, k〉
El,m − Eh,k

〈h, k|HI |l, j〉
Eh,k − El, j

}
. (F4)

To generalize the renormalization procedure beyond weak coupling, one may use Wegner’s formulation of an infinitesimal
operator renormalization group [145] whereby states inside an energy shell of width δ around the cutoff � are integrated: H (� −
nδ) = T (n)H (�)T †(n) with T (n) = exp ∗iη(n)), H (� − Nδ) = H eff after a number of RG steps N , and η(n) = [Hd (n), H (n)].
Here Hd (n) is the diagonal part of the Hamiltonian obtained after n � N steps. The Hamiltonian H (� → ∞) is usually not
known, and in practice one starts from an ansatz for H eff

ll at finite �, such as Eq. (11), and takes the continuum limit as described
in Sec. IV D. Classical numerical procedures have been derived from Wegner’s operator RG [182], and it would be interesting
to explore their use in quantum computation.

24This formalism is analogous to a Poisson bracket formalism invented in the context of weak wave turbulence in fluids [180]. Interestingly,
it has been exploited recently to study the self-similar infrared behavior of a scalar φ4 theory far-off-equilibrium [181].
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