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Exact results are presented for one-dimensional models of a band problem, an elastic solid, and a classical
relativistic field theory with broken symmetry.

In this paper we wish to report on a series of
recent model calculations in one dimension. Al-
though related mathematically, the models provide
insight into a number of physical phenomena: band
structure, phonon spectra, and relativistic field
theory. The results contain both the expected and
the unexpected.

Let us begin with the Schrodinger equation in one
dimension, and ask first: For what potentials mill
we have ref lectionless transmission at all ener-
gies'P This question has been answered by Kay and
Moses, ' and H we require exactly one bound state,
they find the potential to be essentially unique:

V(z}= -g/cosh'(z/r},

g= 2/v'.

Now let us consider a lattice of such potentials.
If the lattice constant is b, then the potential U(z)
will be given by the lattice sum,

U(z)= g V(z-nf). (2

We now ask the question: Will any aspect of per-
fect transmission persist in the lattice problems
The answer we find is affirmative; the band prob-
lem will be characterized by only two bands f This
result might be surprising to solid-state physicists,
although it is known in mathematics from a study
of Hill's equation. ' In fact, given the existence of
exactly two bands, one proves that the potential
must be an elliptic function.

Let us now perform the lattice sum indicated by
Eqs. (I) and (2}. Using a well-known expansion of
the Weierstrass elliptic function P(z) with periods
ru„v, (see Whittaker and Watson' ), we have

2A ~

U(z) =g —P(z)+E, .

where
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Thus, using the relation between g and r, the
Schrlinger equation for the wave function g be-
comes (subscripts indicate differentiation)

g„=[2P(z) +E, E] /-;

this is simply Lam4's equation'

y„=[a(n+ l)J(z)+a]y,

(4)

with n = l. We defer discussion of the band struc-
ture until later, simply noting that periodic solu-
tions of Lame's equation occur in n+ 1 bands for n

integer 'Thu. s the band problem of Eq. (4) has
exactly two bands (henceforth to be called valence
and conduction, respectively), instead of the usual
infinity of bands.

How then do the usual simple "physical" argu-
ments, as given in the elementary textbooks, ' '
for band gapa at each zone boundary go wrongp
First, although our potential U(z) can be made ar-
bitrarily weak, it does not depend linearly upon a
coupling constant, as in perturbation theory. But
even these perturbation arguments may be rigor-
ously justified only in the instance that U(z) can be
represented by a finite Fourier series. '

On the other hand, we may obtain an understand-
ing from the following simple consideration: The
potential V(z) of an isolated site has one bound

state and no reflection. Thus, if we imagine these
atomic potentials strung together with a very large
lattice constant so there is essentially no overlap,
then, since there is no reflection from an isolated
site, there is no Bragg reflection and hence only
one band. The other band will arise from overlap
of the bound states, and hence will be nearly de-,
generate in our limit of large lattice constant.

This argument is certainly not rigorous, but sim-
ply offered to supply a feel for the phenomena. It
is a reasonable picture, since the size of the va-
lence band gaps depends upon the reflection coeffi-
cient rather than overlap, in contrast to conduc-
tion band gapa.

Vfe now turn to another problem, seemingly un-
related, which is the sine Gordon equation. This
is a classical scalar field Q(x, t) in one space di-
mension. The Hamilton density is taken to be
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X= —,[ P,'+ g+ 4m' sin'( —,Q)] . (5)

y'(x)=4tan 'e' '" '. (6)

Further, these kinks are completely transparent
to small-amplitude oscillations.

We now wish to consider static solutions with a
finite density of kinks (or antikinks}, i.e., a kink
crystal. The equation of motion for the P field,
as derived from the Hamiltonian, is

This system and its higher-dimensional counter-
part have arisen in such diverse physical situa-
tions as the Josephson effect, dislocation theory,
and relativistic field theory. Such wide application
might best be understood by remarking that Eq. (5)
is the simplest example of an interaction periodic
in the field. Thus, our system bears the same re-
lation to a general periodic interaction as does
Mathieu's equation to the general Hill equation. In
addition to small-amplitude oscillations satisfying,
in first approximation, the Klein-Qordon equation,
and in second approximation a XQ» interaction, the
system has static solutions corresponding to a kink
or an antikink,

tz; K(p, ) is the complete elliptic integral of the
first kind with parameter p, . We have transformed
to positive parameter and hence to a real modulus.

We note that the relation of P (and thus tz) to the
lattice constant b is given by

2(tt)1/zK(tz) (12)

We now observe that this is an alternate form
for Lamb's equation, again with n= 1. The solu-
tions are'

)
H(c/+ Qo) ~z(~)4(&l &0 =

e( )

and ~ will be determined from

1+, =1+ p cn~ —0 =—A (14)

-2rcz(oo)
7 (15)

and the requirement that Z(n, ) be purely imaginary.
H, e, and Z are Jacobi's eta, theta, and zeta func-
tions with parameter p. .

The usual wave vector k will be determined from
the equation

P„—P« = m'sing .

Thus, a static solution will satisfy

Q'„=m' sing' .

(7)

(8)

and is necessarily real. Thus Eqs. (14}and

(15) together determine the band structure of Eq.
(4}. We distinguish two cases.

Case 1:valence band. Let n, =K+ia; then
This equation may be transformed into the equa-
tion of motion of a pendulum, ' and may thus be in-
tegrated in the same way to yield

(9)

sn'(a/tt, )
""'dn'(a/t, )

'

where p., + p. =1.
Case 2: conduction band. Let no =ia,' then

(16a)

g« —g„+m'cosp'g =0.

If we set P(x, t) = P(x)e ' ', then

g„+ (&u' —m' cosQ')f = 0 .

(10a)

(lob)

After a change of variables, and substitution of
Eq. (9) for Q', we find

tnt = 2p sn —p 1+

where

o. = [xm/(p)'/z] -K(p), g = 4rrP/(P'+ 4m'),

sn(o, /tz), cn(n/tz), dn(n/tz)

are the Jacobi elliptic functions with parameter

E is the incomplete elliptic integral; Qo(0) = p,
p'(0) =0, fixing the location and spacing of the
lattice.

We now consider small oscillations about the
static solution, i.e., P(x, t) = P'(x) + g(x, t). Then

P satisfies the equation

A=1+
cn*(a/p, ,)

' (16b)

In both cases, a is restricted to lie between
+K(tz, ). Thus the valence band lies within m'y. ,/
tz & aP &0, and the conduction band above &o' &mz/p.
The band gap is m'/p, &&u'& m't/, ,/p,

Figure 1 shows the energy as a function of wave
vector for a particular value of the lattice con-
stant b comparable to a single kink width. The
actual value is p, = &, bm=2. 61. This figure is
appropriate to a band problem.

Figure 2 shows frequency as a function of wave
vector for the same parameters as Fig. 1.

As has been noted, ' the sine Gordon equation
serves as a very interesting model of a relativis-
tic field. Upon analyzing small oscillations about
a single kink, it is found that the bound state in
fact corresponds to a rigid translation of the kink.
Thus, the valence band in fact is made of corre-
lated translations of the individual kinks, and is
properly identified as the phonon mode of our
original kink crystal (or, if one wishes, the Gold-
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FIG. 1. Energy is shown as a function of wave vector

for the band problem when the lattice constant b is 2.61/
m+

stone bosons associated with broken translational
invariance). This phonon mode is shown as the
lowest dispersion curve of Fig. 2. The remaining
conduction band corresponds to renormalized
IQein-Gordon bosons.

Thus, to summarize our reinterpretation of the
problem as an elastic solid, we have determined
the phonon modes of a one-dimensional crystal
in the harmonic approximation. The harmonic
approximation is appropriate for a classical prob-
lem. But we have included interactions between
all particles, not just near neighbors, since the
interaction is exponential for large distances.

kb

FIG. 2. Phonon frequency co is shown as a function of
wave vector for the same lattice constant as Fig. 1.

And, of even greater interest, our particles
making up the crystal are not points, but extended
polarizable bodies, as are real atoms and mole-
cules. Thus, our interaction is not given by a
simple two-body potential.

As might be expected, at finite temperatures
there is no long-range crystalline order, since
the interaction is essentially exponential at large
distances. In fact, all thermodynamic properties
of the sine Gordon equation can be evaluated by
functional integral methods, and will be presented
in a subsequent publication.
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