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Structural phase transitions are considered in which the order parameter is a homogeneous deformation of the

crystal. The fluctuations at these transitions are the acoustic modes, and it is shown that an effective

Hamiltosian may be constructed describing the homogeneous deformations and their fluctuations. There are

three cases which result, those in which there are no fluctuations with wavelengths less than the crystal

diineleians, those in which the acoustic modes have strongly temperature-dependent velocities for wave

vector on particular hoes of reciprocal space, and those for which the velocities are temperature dependent

foe ~ve vectors within planes in reciprocal space. In many cases, the transitions are expected to be first order
beciluse of the presence of cubic invariants in the effective Hamiltonian. In those which may be continuous,

the behavior is shown by use of renormalization-group theory to be that of classical Landau theory, with the

possibility of logarithmic corrections in one particular instance. Unfortunately, we are unaware of any

examples of this case, but in the other cases, the results are in accord with experimental results.

I. INTRODUCTION

During the last few years, considerable progress
has been made in the understanding of the effects
of fluctuations on critical phenomena. The re-
normalization-group technique' has enabled the
Landau theory of phase transitions to be extended
to take account of fluctuations at least approxi-
mately, and has provided justification for the uni-
versality hypothesis for critical phenomena; name-
ly, that systems having the same symmetry are
expected to have similar critical properties. The
application of these ideas to structural phase tran-
sitions has provided considerable insight, but has
also shown that there can be a wide variety of be-
havior at different phase transitions dependent
upon the number of components of the ordering
variable, the dimensionality of the system, and
the symmetry of the interactions.

In this payer, we consider structural phase
transitions at which a homogeneous deformation
of the unit cell of the crystal is the primary order
parameter. At most, if not all, structural phase
transitions there is a small deformation of the unit
cell, but this is most frequently because the ho-
mogeneous strain parameter is a secondary order
parameter. For example, in the ferroelectric
phase transition of BaTiO„ the ferroelectric dis-
placements are the primary order parameter and
these are coupled to the tetragonal strain parame-
ters by a term which is linear in the strain and
quadratic in the ferroelectric displacements. This
is an example of a compressible ferroelectric
phase transition. In the type of phase transition
considered in this paper, the homogeneous strain
is a primary order parameter and we expect in at

least some cases that some combination of the
elastic constants will become small above T,.
Examples of this type of phase transition' are the
structural phase transition in Nb, Sn, the ferro-
electric phase transition in KH, PO4, and the phase
transition in DyVO4. In each of these cases, there
is a different origin for the temperature depen-
dence of the elastic constant: electronic band
structure, ferroelectric fluctuations, or the Jahn-
Teller effect, but these effects have the same sym-
metry as the appropriate homogeneous deforma-
tion.

The stability of crystals against homogeneous de-
formations is discussed in the text by Born and
Huang' using macroscopic elasticity theory. It is
not difficult to construct a Landau expansion for
the free energy in a power series in these strain
parameters. In order to go beyond Landau theory
it is necessary to include the fluctuations. Fre-
quently extending a Landau expansion to include
fluctuations is straightforward, but in this case
there is considerably more difficulty. The diffi-
culty arises because the fluctuations are long-
wavelength acoustic waves in the crystal and are
normally described by lattice dynamics instead of
macroscopic elasticity theory. A large part of
Sec. II discusses this difficulty and shows how it
may be overcome and may lead to different types
of behavior. The different possible types of phase
transition which may occur are then classified for
all of the different crystal classes.

In Sec. IQ these results are used to construct
effective Hamiltonians for these phase transitions
which are then analyzed using renormalization-
group theory in Sec. IV. In Sec. V the results are
discussed and the predictions compared with the
available experimental results.
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u (r) = Q e BrB.
B

The strain energy density of the crystal can then
be expressed in terms of these strain components
and the isothermal elastic constants as

1
U

2 Q c Br' a.Beyh '

eByX

Since the elastic constants are symmetric in the
aP and yX indices, it is frequently useful to re-
write this expression in the Voigt notation when

e =e e=P=p

e, =e B+eB, n+P, p=9- n- P.
In the Voigt notation the energy density is

1
U= 2g c„e,e (2)

where Q p Q @p& Symmetry may then be used to
reduce the number of independent elastic constants
as described by Nye. 4

The crystal is stable against homogeneous de-
formations if the elastic constant matrix c„has
positive eigenvalues. ' If one or more of the eigen-
values decreases to zero, the crystal may distort
continuously to a new structure with a symmetry
determined by the eigenvector of that eigenvalue.
For example, in the case of a cubic crystal the
elastic constant matrix has three eigenvalues: a
singlet of symmetry A, associated with the eigen-
value Q] y+ 2&F2 a doublet E with eigenvalue c»
—c», and a triplet T, with eigenvalue c„. The
first of these eigenvectors corresponds to a change
in the volume of the crystal, the second to an ex-
pansion along one cube axis and an equivalent con-
traction along another, and the third to a shear of
the unit cell.

B. Acoustic waves

In the theory of phase transitions it is necessary
to consider the effect of fluctuations in the order
parameter with wave vectors close to, but differ-
ent from, the wave vector of the ordering field.
In the present case, the fluctuations of the strains
with small wave vectors, q, are acoustic waves
and must be treated by the methods of lattice dy-
namics. ' The displacements in an acoustic wave

II. ELASTICITY THEORY AND ACOUSTIC WAVES

A. Stability conditions

A homogeneous deformation of a crystal is de-
scribed by the components of the strain tensor e B

in terms of which the displacement u(r) of an atom
at r is given by

with wave vector q are given by

u(r) =we"'
and the strain generated by this wave is given by

~ ~

e B= 5u /5rB iq=Bco e"'. (3)

The equation of motion of elasticity theory is then

p(o'm =Q M „B(q)wB,

where p is the density of the crystal and

M B(q) = Q c „,„q„q, .

For each wave vector M B(q) has three eigenvalues
and eigenvectors corresponding to the three acous-
tic modes of vibration for each wave vector. In
general these eigenvectors do not produce those
combinations of the strains which are the eigen-
vectors of the elastic constant matrix, and further-
more the eigenvalues of this matrix are not the
eigenvalues of the elastic constant matrix, but
linear combinations of them. These complications
arise in part because the elastic constant matrix
c„is a 6 x 6 matrix whereas the M, B(q) is only a
3 x 3 matrix.

This difficulty can be illustrated by the example
of a cubic crystal. When the wave vector is along
[100], the longitudinal mode is a linear combina-
tion of the strains (1/W3)A, + (v 2/W3)E, with an
elastic constant c». The transverse modes give
pure T, strains with elastic constant c44. When
the wave vector is along the [110]direction the
longitudinal mode gives a linear combination of
the A, E, and T, strains, the transverse mode
polarized along [110]gives a pure F. strain and
the transverse mode polarized along [001] a pure
T, strain.

The energy density associated with the acoustic
modes is a sum over all the wave vectors and
over all three different branches. When this is re-
written in terms of the strains each acoustic wave
will contribute to the energy density an amount
proportional to the elastic constant of that wave
and multiplied by the appropriate combination of
eigenvectors dependent upon the acoustic wave.

Close to a phase transition associated with a
homogeneous deformation one of the eigenvalues
of the elastic constant matrix becomes small and
the behavior will be dominated by the fluctuations
of the lattice waves with the smallest velocities.
The velocity of an acoustic wave is a linear com-
bination of the elastic constants for the different
irreducible representations of the elastic constant
matrix. Except by chance, there will be only one
of these irreducible representations for which the
elastic constant becomes very small. It follows,
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therefore, that the velocity of the acoustic waves
will become vanishingly small for only those waves
for which the distortion is purely that of the irre-
ducible representation of the elastic constant ma-
trix with the smallest eigenvalue. In order to dis-
cuss the fluctuations at these phase transitions the
behavior of the acoustic waves in the neighborhood
of these special acoustic modes must be examined.

In a cubic crystal the expression for M, ~(q) is

M, B(q}= (c»+ c«)q qz

+ [c«q'+ (c„—c„-2c„)q',]6„. (4)

U the smallest eigenvalue of the elastic constant
matrix is c44 and the associated strains of T2 sym-
metry, the acoustic waves with the smallest ve-
locities are the transverse waves polarized along
a cube axis and propagating perpendicular to that
cube axis. The behavior of the velocities for wave
vectors q=(q„,q, , q,) can be obtained from Eq. (4).
If q, /q is small the smallest velocity is deter-
mined by the expression

cg~ —cg2 —2c« q,2(cia+ 2c»+ c44)
Cl g Cg2

(5)

As c,4-0 the velocity of the acoustic waves de-
creases for all the modes propagating in the (xy)
plane, but for modes propagating out of this plane
the velocity does not become zero as c,4-0. In
this case, for which the acoustic waves propagat-
ing in a plane have their velocities determined by
the eigenvalues of the elastic constant matrix, the
behavior will be denoted type G.

In the derivation of Eq. (5}, c«was assumed to
be much less than c„-c„or c„+2c». The second
term is therefore necessarily positive. U the ma-
terial is elastically isotropic, cyy cy2 2c44
the velocity of the acoustic waves is independent
of direction, type III behavior. For a crystalline
material undergoing a phase transition this re-
quires the unrealistic assumption that cgg c,2 and

2c«change by the same amounts with temperature.
This case is therefore only applicable for amor-
phous materials.

If the smallest eigenvalue of the elastic constant
matrix is cyy cy2 the only acoustic modes whose
velocities are determined by this eigenvalue are
the waves propagating along [110]directions and
transversely polarized along [110]. If q, is the
component of the wave vector along [110]and q,
the component along [001]while q, and q, are small
compared with q, the velocity of these waves in
the neighborhood of the [110]direction is given by

2 2
1 Cyg+Cy2 gx
&(cll 12) (c44 2cll &c12} '2 (6)

q c~2+c44 q

In this case, type I, the velocity of the waves is
determined by the eigenvalue of the elastic constant
only along the [110]lines. Since c„—c» has been
assumed to be the smallest eigenvalue the coeffi-
cients of q', and q', are both positive.

Finally, if the smallest eigenvalue of the elastic
constant matrix is cyy+2cg2 there are no acoustic
waves with a velocity determined solely by this
eigenvalue. This may be verified by symmetry.
The A, irreducible representation has the full cubic
symmetry. The introduction of a wave vector of
necessity breaks some symmetry elements so that
an acoustic wave cannot have complete A, symme-
try. This type of behavior is denoted type 0.

C. Different crystal classes

In Secs. II A and II B the conditions for the sta-
bility of crystals and the behavior of the acoustic
modes was discussed with particular reference to
cubic crystals. These considerations may be ex-
tended to all of the different crystal classes and the
results are listed in Table I. For each crystal
class, the irreducible representations of the elas-
tic constant matrix are listed using the notation of
Heine' and for the elastic constants of Nye. ' The
stability criteria are listed for each of the different
irreducible representations by giving the elastic
constant expressions which must be greater than
zero for stability.

The behavior of the acoustic waves with veloci-
ties determined solely by the eigenvalues of the
elastic constant matrix is also listed in the table.
For type-I behavior the special directions of the
wave vectors are given together with the polariza-
tion vectors of the acoustic modes, while for
type-II behavior the directions perpendicular to
the special planes of wave vectors are given.

The only examples which have not been discussed
in Sec. IIB are those which occur when the elastic
constant matrix has two or more irreducible rep-
resentations of the same symmetry. For example,
the 2A, representations in the hexagonal, or tri-
gonal classes. In these cases, there is in general
no acoustic wave whose velocity is zero when the
elastic constant stability condition given in Table I
is equal to zero. In special instances, if c» =0
while c»-0, for example, there is an acoustic
mode whose velocity -0. In general, this is not
the case and there is no requirement that an acous-
tic mode must have zero velocity when a stability
condition is violated.
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TABLE I. Homogeneous deformations, stability conditions, and acoustic waves.

Representation Strain Stability condition Acoustic waves
Cubic

invariant

Cubic classes
A,
E

T2

81 =82 =83
ei =-e2
e3=-2ei =-2e2
e4, e5, es

Cif + 2C12

11 12

C44

0
& qll [11ol

ull [1i01
II q& [100]

oil [1oo]

Yes
Yes

Yes

Hexagonal classes
2A1

E2

Ei

81 =82' 83
ei =-82, es

e4, e5

11 12) 33 2 13
2

11 12

C44

0
II q&[001]

u& [001] and q
II qL [001]

ull [oo1]

Yes
Yes

Yes

Trigonal classes 32, 3m, 3m
2A1
2E

Trigonal classes 3, 3
2A
2E

Tetragonal classes 4mm,
42m, 422, 4/mmm

2A1

Bi

B2

81=82 83
ei =-e2, e4, e5, es

ei =-e2, e4,.85, es

81 =82; 83
ei =-e2

e6

e4, e5

( 11 +c12) 33 2c132

(cii —c12)C44- 2ci42

(ci1+ci2)c33- 2c132

( if — 12)c44 —2c14 —2c15

(cii+ c12)C33- 2C132

fi f2

css

C44

0
1 ql [11o]

u [1io]
I q [100]

u I [0101
II qL [001]

u II [oo1]

Yes
Yes

Yes
Yes

Yes
No

No

No

Tetragonal classes 4, 4, 4/m
2A
2B
E

81=82 83
81 = -82,'86
e4, e5

11 12) 33 2 13
2

f» 66-2cis2

C44

0
0

II qL [001]
u II [oo1]

Yes
No
No

Orthorhombic classes
3Ai
Bi

B3

ei 82'83
es

Ki
css

C44

0
1 qll [o1ol or [1001

u II [100] or [010]
1 q I [100] or [001]

ul [001]or [100]
1 q II [001] or [0101

u II [0101 or [001]

Yes
No

No

No

Monoclinic classes
4A
2B

Triclinic classes
6A

Isotropic classes
I =0
L=2

81 82; 83 85
84~86

ei, e2,.e 3, e4, e5, es

81 =82=83
84 85 86
ef 82
e3=-2ei =-2e2

K2

44 66 46
2

3cf2+ 2c44
C44

0
IO u&q

Yes
No

No

Yes
Yes

~t = detl &gg,
K2= det) c;~,
ICt=detl &;g,

i j—3
i, j~3or 5
z, j —6
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IH. EFFECTIVE HAMILTONIAN

A. Landau expansion

In the Landau theory of phase transitions the
free energy is expanded as a power series in the
order parameter. In Sec. II A the form of the
quadratic term was discussed for homogeneous
deformations. In this section the form of the cubic
and quartic terms in this expansion are described.
If there is a cubic invariant of the order parameter
then the Landau theory of phase transitions shows
that the phase transition is of first order. ' The
presence of a third-order invariant is determined
by the symmetry of the irreducible representation
of the elastic constant matrix and the results are
listed in Table I. Clearly, many phase transitions
against homogeneous deformations are of first
order. If the third-order invariant is sufficiently
small at these transitions it may well be that the
elastic constant becomes very small and the fluc-
tuations very large before the transition occurs
as indeed seems to be the case in Nb, Sn.'

There are, however, nine cases shown in Table
I for which the third-order invariants are absent
by symmetry, and for which the transitions may
be continuous provided that the quartic interac-
tions are positive. In these cases, the form of the
interactions may be obtained either from the
fourth-order elastic constants or by symmetry.

In the cases where the irreducible representa-
tion of the elastic constant matrix is a singlet, the
Landau free energy is given by

F,= V~'+ V, e

where V, is the appropriate combination of elastic
constants for the strain e, and V4 is determined
by the fourth-order elastic constants. %hen the
irreducible representation is a doublet with com-
ponents e, and e„ the free energy is given by

E« = V, (e', +e,')+ V, (e', +e', )'+ W, (e', +e,') . (7)

A similar expression may be written down for the
T, triplet modes in the cubic system.

B. Fluctuations

+ 4, cos'8+ Kq')e, (q)e,(-(I}, (8)

where the wave vector q has been written in spher-
ical polar coordinates and X, and X, are the appro-
priate expressions of the elastic constants which
yield the coefficients of q, /q and q, /q . The
term Kq' describes the dispersion of the acoustic
waves. In general, this term should be anisotrop-
ic, but the anisotropy does not change the later re-
sults significantly. A similar result to E(I. (8) can
be obtained for the 8, representation except that
c~ is replaced by —,'(c„—c»} and the origin of the
(t) angle is rotated by —q'w. Similarly, E(I. (8) is ap-
plicable for the orthorhombic class with a strain
of By symmetry, while the corresponding expres-
sions for B, and B, symmetries may be obtained
by appropriate interchange of axes.

The effective Hamiltonian may then be written
in the notation usually adopted for calculations
using renormalization-group theory by appropriate
rescaling as

The Landau theory of phase transitions may be
extended to include the effects of fluctuations by
including the effects of strains with wave vectors
q which are nonzero. If the irreducible represen-
tation of the elastic constant matrix is a singlet,
a continuous phase transition may occur if there
are no acoustic waves or if they are of type I, as
shown in Table I. In the former case, fluctuations
of the strain will occur only for wavelengths com-
parable with the crystal dimensions, and conse-
quently deviations from Landau theory will only
occur extremely close to T„except for very small
crystals.

In the latter case, the acoustic waves are type I
and their dependence upon q is described by Eq.
(6}. In the case of the 8, representation of the te-
tragonal classes the term quadratic in the strain
may be written approximately as

1
(c~@A.,cos'(f) sin'f sin'e

r+gcos sin'ft) sin 8+Qcos 8+q' S q$ -q)-Qo S q, $ q S q, S qy qg
fI ci c2 Qs

where the coefficients g„g„and uo are given in terms of the elastic constants.
The effective Hamiltonian for the strains with E symmetry in the tetragonal classes is more complex

because the representation is two dimensional. The acoustic waves are type I and, in general, correspond
to a linear combination of the two basis representations determined by the direction of propagation in the
(xy) plane. By using the analogy of this problem to that of dipolar systems' an effective Hamiltonian may
be constructed as

2 2
Z= I I ——f U', v(q)S, (q)Sv(-q) —(,+S, v) ffjS.(q)S,(q )Sv(SU)S (-q, —j —q ),

Oe1 gs:]. ~I. 'Ia 'IS
(IO)
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where

2

rr'. ,(q) (r.+=q'+fq'. +g,—', n.,+a, ~ ~'

and the limit is taken as h0-~.
In this expression terms of order q', and q q&

have been neglected as they do not significantly
alter the results. If the system is isotropic in the
(xy) plane the terms f, and v, are zero

IV. PHASE TRANSITIONS

A. Singlet case

In this section standard renormalization-group
theory' is used to elucidate the properties of the
phase transitions described by the effective Hamil-
tonians obtained above. The Hamiltonian given in

Eq. (9) is very similar to that of uniaxial dipolar
systems discussed in detail by Aharony. ' It may
be treated in the same way to obtain the differen-
tial form of the recursion relations for the param-
eters g, h, and u, which to lowest order are

dgs 2
dht

2y l

B. Isotropic doublet

The behavior described by the Hamiltonian (10)
is more complex and initially the isotropic case
for which f =v =0 will be considered. The propa-
gator can then be written as

(„+-.+ e' '(~ ~.~s) (14)

The differential recursion relations can then be
obtained using the formulas of Aharony' and of
Aharony and Fisher' to give to lowest order in uf

dg)
dL

= ug —16A(gg)u( p (16)

where
sin8d8

A(x) =2m (1,6), .

Landau theory is expected to be valid. The border-
line between classical and nonclassical behavior
which is at d=4 for short-range systems' and d=3
for uniaxial dipolar systems is at d=2 for this
Hamiltonian.

where

=u) —36u gB(g(, hg), The recursion relation for g, yields g, =g0e" so
that g, - ~ as l- ~. For large x the integral be-
comes

2t IP sin8d8dpB x, y)= (1+xcos'8+y sin'8 cos'P sin'P)' '

(13)

From Eqs. (11}g, =g~" and h, =hoe~' showing that

g, and h, —~ as l -~. The integrals in Eq. (13}
may be performed approximately if x and y are
large to give

B(x,y) = e(xy) '".
The recursion relation for q then becomes for

large l

du
0 0

'=u —36vu'(g h )
' 'e "

which may be solved to obtain an expression for
u, which for large l is

el
I/u, +36m/(g, h )'~2 ~

Since u, is increasing with l it is unclear that the
expansions to lowest order in u, are valid. As,
however, in the dipolar problem' the expansion pa-
rameter is not u„but u, (g, h, ) '~'. In this case
this parameter behaves like e ' as l —~. The
power series is therefore rapidly convergent and

A(x) =v'/(4x}'~'.

With the aid of this expression and the result for
g„ the equation for u, may be integrated to give

u, = Ke'/(l, + l), (17)

where l, =K/u, and K=g,' '/9x .
This result is the same as that obtained by

Aharony' for the uniaxial dipolar case apart from
the numerical factor K. The behavior is then sim-
ilar; namely, the critical behavior is described by
classical exponents and the transition temperature
occurs when x0= 0. There are, however, logarith-
mic corrections which for the correlation length
f and susceptibility y have the form

&
I' (T-T,)-'~in(T-T, )~'&'.

C. Anisotropic doublet

When anisotropy in the (xy) plane is allowed, as
is always the case in real crystals, the parameters
f and v in Eq. (10) are not zero. The propagator,
Eq. (14), then becomes

2 2 2 "j.
Ge() + 2+ V+f VV 6 0 Ve

0 0 0 q~ 0 q~2 eg (~(2
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The differential recursion relations for u, and

v, are then

' =u, ——,'(6u, +3v, )'B(g„f, )

di' = v, —v, (12 u, +9v, )B(g„f,),

where B(x,y) is the integral given in Eq. (13).
As yet we have been unable to obtain a solution

to these recursion relations. In part this is be-
cause the recursion relation for f, is complex and
involves some integrals which are not readily
evaluated. Even when the anisotropy in the propa-
gator, f, is neglected the solution to the recursion
relations has not been obtained.

The recursion relations may be rewritten by
changing the variables u, -x,e' and v, -y,e' and
noting that for large g„B-(g, )

'~ when

+ 3y, ) B'(f,

dery' = —y, (12x, + 9y, )B'(f,) .

where B'(f,) =B(g„f,)e' Since B.' is positive
dx, /dl is negative. Further, since the condition
for the quartic terms to give a continuous phase
transition is u, +v, &0 and 2u, +v, &0 the second re-
cursion relation gives that d ly I/dl is negative.
In order for these equations to lead to logarithmic
corrections x, andy, should decrease to zero as some
power of l. Unfortunately, there appears not to be a
consistent solution with this property. Since the re-
cursion relation for x, shows that x, always de-
creases it seems most likely that as l —~ that x,
will become negative and then y, will decrease
until the transition becomes of first order when

2&i+ vi ~0.

We are unaware of any real system for which
the phase transition is described by this model, so
it might seem inappropriate to devote much effort
to its solution. On the other hand, a very similar
problem is that of the anisotropic cubic dipolar
systems of which there are many examples which
show large cubic anisotropies and first-order
phase transitions. Behavior which is different
from that predicted theoretically for the isotropic
dipolar system. ' Since the above problem is very
similar but somewhat simpler than the full dipolar
problem, a solution might well provide insight
into the role of anisotropy in cubic dipolar sys-
tems.

V. DISCUSSION AND COMPARISON W'ITH EXPERIMENT

The behavior of acoustic waves at structural
phase transitions has been reviewed by Rehwald. '
In this paper we are concerned with materials
which have a linear coupling between the order pa-
rameter and the acoustic waves. There are sever-
al examples of cubic materials which undergo
phase transitions to a tetragonal structure accom-
panied by a softening of the elastic constant Q]y

cy2 In the case of Nb Sn both ultrasonic and neu-
tron scattering' measurements show that c» —c»
decreases to a very small value at the transition
temperature and that the temperature dependence
of the elastic constant is described by classical
theory. Similar results are found in In- Tl alloys
by Gunton and Saunders. ' From Table I it is
seen that these transitions are expected to be of
first order because there is a cubic invariant al-
lowed in the Hamiltonian. In both of these exam-
ples the third-order invariant must be small in
magnitude, as the phase transitions are close to
continuous. In the absence of the third-order in-
variant Table I shows that this type of transition

TABLE II. Properties of ferroelectrics which are piezoelectric in the paraelectric phase.

Classes Strains
Ferroel. ectric

axis Symmetry
Cubic

Fluctuations invariant

6
622, 6mm
6m2, 6
32 Bm

42m
42m, 4, 4
4
222
222, 2mm
222, 2mm
2

eg = —82, 86
e4, e5

8g = —82, 84
e5, e6
ee
e4, e&

e6
e6
e5
e4
84, ee
e4, e6

X, P
x, y

x, y
2

E

B2
E
B
B,
B2
B3
B
B

I
II
0
I
I
I
0
0

Yes
Yes

Yes

No

No

No
No
No

No

No

No
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would be governed by classical exponents whereas
the isotropic n=2, d=3 system has nonclassical
exponents. The temperature dependence of the
elastic constants observed in these systems lends
support to our analysis.

Another class of materials which exhibit elastic
instabilities are ferroelectric materials in which
the material is piezoelectric in the paraelectric
phase. In Table II are listed the crystal classes
and symmetry properties of these phase transi-
tions. In those cases where the transition is con-
tinuous and where the mode is a singlet, the the-
ory predicts that the critical behavior will be
classical without logarithmic corrections. In con-
trast, the theory of uniaxial ferroelectrics which
are not piezoelectric predicts classical behavior
with logarithmic corrections. ' When the ferro-
electric order parameter is a doublet, E modes
in tetragonal classes, the behavior expected is
classical with possibly logarithmic corrections
or a first-order transition whereas for nonpiezo-
electric ferroelectrics the behavior to be expected
is nonclassical. " The result of the coupling to the
acoustic waves is therefore to decrease the effect
of the fluctuations, and to suppress the dimension-
ality separating classical from nonclassical be-
havior by one from that in nonpiezoelectric ferro-
electrics. These results seem to be at least quali-
tatively in accord with the available measurements
on these materials. In KH, PO, the ferroelectric
mode has B, symmetry and the transition is almost
continuous. The exponents are found to be classi-
cal" "and there has been no report of logarithmic
corrections. In other piezoelectric ferroelectrics
such as Rochelle salt less-detailed measurements"
are available, but the transitions are of first or-
der and consistent with classical behavior.

The Jahn- Teller systems also show acoustic
wave instabilities, as described in the review by
Gehring and Gehring. " These materials have the
symmetry 4/mmm at high temperatures. In
DyVO, the B, mode is strongly temperature de-
pendent" and its temperature dependence is con-
sistent with classical theory as is the behavior of
the specific heat. " In TmVO, and TbVO4 the
elastic constant e~ is strongly temperature depen-

dent"'" while in the former case the specific heat
as a function of temperature is also given accu-
rately by mean field theory. " These results are in
excellent agreement with the predictions for in-
stabilities against Bg and B2 distortions in this
crystal structure.

In conclusion we have shown that Landau theory
is to be expected to provide an excellent account
of the statics of structural phase transitions in
which a homogeneous deformation is a primary
order parameter. The only possible exceptions
are for the E distortions of tetragonal classes for
which there may be either logarithmic corrections
to Landau theory or a first-order transition and
for L =2 transitions of isotorpic systems for which
a first-order transition is predicted, but the fluc-
tuations would be nonclassical if the transition was
continuous. It would be of interest to investigate
transitions of these types further theoretically and
experimentally if examples could be found. The
other surprising result is that in some cases con-
tinuous phase transitions may occur even though
no fluctuations are possible for wavelengths short-
er than the crystal dimensions.

Since mean field theory is predicted to give a
good amount of the statics of these phase transi-
tions it is reasonable to expect that anharmonic
lattice dynamics will provide a reasonable account
of the dynamics. There is always a difference be-
tween the elastic constants in the low-frequency or
theormodynamic region from that in the high-fre-
quency or collisionless region. " Consequently,
whenever a phase transition is associated with an
instability against an acoustic wave, types I and
II above, the spectral response of the acoustic
mode is expected to exhibit a central peak for the
same reasons as discussed in detail for piezoelec-
tric ferroelectrics. " Such a central peak has been
observed in Nb, Sn, ' and in TbVO, . '
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