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The equations governing long-wavelength, low-frequency excitations in icosahedral quasicrystals
are derived. It is found that while the speeds of the propagating modes are isotropic, the attenua-
tions are not, implying that purely macroscopic experiments can in principle distinguish quasicrys-
tals from crystals, glasses, or conventional incommensurate systems. The coefficient of the anisotro-

py is, regrettably, quite small. The complete spectrum consists of three diffusive phasons, two pairs
of transverse and one pair of longitudinal sound modes, a vacancy diffusion mode, a heat diffusion

mode, and, in a material with n atomic species, n —1 additional particle diffusion modes. The dif-

fusion times of the vacancy and phason modes are expected to be comparable and very long. It is

shown that propagating phasons, even at short wavelength, are an unlikely prospect. The static,
equilibrium elastic properties are also anisotropic, but are approached very slowly, and in many situ-

ations, the elastic response is isotropic on experimentally accessible time scales. Our results also im-

ply that nonlinear fluctuation corrections to the linearized hydrodynamics presented here are finite

as q and co~0, i.e., there is no breakdown of conventional hydrodynamics in icosahedral quasicrys-

tals.

I. INTRODUCTION

Since the observation' of icosahedral symmetry in rap-
idly cooled A16Mn, quasicrystals have been the subject of
considerable experimental and theoretical activity.
Much of this work has focused on the unique microscopic
properties of the icosahedral phase. It would be pleasing,
however, to find that a (monodomain) cubic centimeter,
say, of quasicrystal could be distinguished from a similar
block of crystalline or amorphous material without a de-
tailed study of its internal structure. We show here that,
in principle, it can be.

While . some purely macroscopic differences between
quasicrystals and ordinary materials, e.g., the presence of
"phasons" and some properties of dislocations have
been noted in earlier work, the hydrodynamic equations
have not hitherto been presented. Since most of the
unusual features which concern us here and some (regard-
ing dislocation motion) to be discussed elsewhere' are ob-
tained by ineans of these equations, we shall derive them
here in some detail. In addition, if we wish to study the
growth of quasicrystals from the melt and in particular
the possibility of growing macroscopic domains, we must
understand the manner in which the hydrodynamic fields
relax. The dynamics of dislocations is also likely to play
an important role in these processes.

A long-wavelength, low-frequency description of a
macroscopic system requires only the slow or hydro-
dynamic variables" —those which oscillate or relax at a
rate which vanishes as the wave number goes to zero.
These slow variables and their equations of motion are
determined by conservation laws (e.g., momentum, parti-
cle number) and spontaneously broken symmetries (e.g.,

translation invariance). Our discussion will concentrate
on single-, component icosahedral quasicrystals for which
there are five conserved variables (mass, energy, and
momentum) and six broken symmetry variables associated
with the phases of the six mass-density waves needed to
specify the icosahedral state.

Let us summarize the results of our analysis: first the
dynamics, then the statics. The hydrodynamic spectrum
consists of two pairs of transverse and one pair of longitu-
dinal sound modes, a heat diffusion mode, a vacancy dif-
fusion mode, and three diffusive "phasons. " Of course, if
there are n atomic species in the material, there are as
many independently conserved particle numbers and
hence n —1 additional diffusive modes. We shall not dis-
cuss these hereafter since they do not affect the structure
of the propagating modes where most of the novel dynam-
ical properties of quasicrystals arise. The speeds of the
sound modes are isotropic while their attenuations are an-
isotropic, reflecting, even at asymptotically low frequen-
cies, the presence of icosahedral order. The coefficient of
the anisotropy is, unfortunately, likely to be exceedingly
small for typical materials' (of order D/rl= 10 ', where
D is a vacancy diffusion constant = 10 ' cm /sec and
g= 1 cm /sec is a typical kinematic viscosity in metals).
The general features of the mode structure have been not-
ed in Refs. 4—6. Reference 5, however, entertains the
possibility of propagating phasons. Our analysis, which
includes dissipation, rules out this possibility in the long-
wavelength, low-frequency limit. Furthermore, as dis-
cussed in Sec. V, it appears unlikely that propagating
phasons exist even at higher wave numbers in quasicrys-
tals derived from metallic alloys. In more detail, the
dispersion relations for the sound modes as a function of
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wave number q:—qg (q =
~ q ~

) are
2r.sc,

co=cLq ——
iIL, q + 2 (10q I6 —9q )

2 p
for longitudinal sound and

col=czq ——,'iy (q)q, a=1,2 (1.2)

for the two polarizations of transverse sound, where the
dampings y~ and y2 separately involve icosahedral invari-
ants of sixth, eighth, and higher order but satisfy

2 (r i(q)+ r2(4) l =I .S Ocr+ rl r
I ~E3+ 2 (13—9q I6) .
2pocy

(1.3)

Here cL and c~ are the longitudinal and transverse sound
velocities, gI and g~ longitudinal and transverse kinemat-
ic viscosities, X3 an elastic constant, and I „and I ki-
netic coefficients for vacancies and phasons, respectively.
I6 is one form of the single icosahedral invariant, apart
from q, of sixth order in q. In the coordinate system
shown in Fig. 1,

4 2 C ZI6=q +qy +q + 6(q qy +qy q +q q )
1+v

(1.4)X P

where 7.=(1+@5)/2 is the golden mean. The ratio of the
coefficients of the anisotropic and isotropic pieces of the
damping is less than or of order D/g because
E3-pocz (pocl. and 1 EC3-D.

Vacancies and phasons are coupled —indeed they in-
volve fundamentally the same process, so that it is not
really meaningful to speak of them separately. Their
motion is governed by an anisotropic 4 X4 diffusivity ten-
sor. Typical diffusion constants for them in, for example,
A16Mn, are expected to be comparable to those for vacan-
cies in ordinary phases of the same alloy. The heat mode
decouples and will, therefore, diffuse isotropically.

The static elastic properties were for the most part dis-
h
z

A A A
Z x X

FICx. 1. This figure shows the coordinate system used in this
paper with the x, y, and z axes normal to the edges of an
icosahedron. In Ref. 6, the z axis passed through one of the ver-
tices of an icosahedron.

cussed in Refs. 6 and 5(b), but one point is worth noting.
The effective elasticity for response to external stresses,
which is obtained by integrating over the phason degrees
of freedom, is anisotropic: i.e., different shear moduli will
in general be measured for shears applied in different
directions. The anisotropy arises because the phasons,
whose elastic energy is anisotropic, relax in the presence
of applied stress to minimize the internal energy. Clearly,
this process is relevant only if the time t over which the
external stress is applied is longer than the relaxation time
for the phasons. The phasons, however, are expected to
relax on the same long time scale ~z -D„'I. ;„as the va-
cancies, where D„ is a vacancy diffusion constant and
L;„ the smallest linear dimension of the sainple. For
typical vacancy diffusion constants, '2 D„=10 s to 10
cm /sec and in a sample with L;„=1cm, ~ii is long
indeed: from 3 to 300000 years. This slow relaxation
compels the experimentalist interested in measuring these
equi1ibrium elastic properties to work at the highest possi-
ble temperatures (since D„ is thermally activated) and to
work with the thinnest practical samples to make zz
manageably small; for L;„=0.1 mm, vii may be as small
as a few hours. In any case, for t «rz, the phason field
will be essentially zero, and the response to the stress will
be isotropic. For t»vz the anisotropic elastic energy
described in the appendix applies. For intermediate times,
the stress will be time dependent. What if the sample
manages to acquire, in the process of preparation, a
nonzero phason field? Such a distortion would also per-
sist for times of order r~ and would, therefore, affect the
results of elastic measurements. However, the initial elas-
tic response would still be isotropic. This may be seen by
taking the elastic energy of Eqs. (2.6)—(2.11), determining
the ordinary displacement field uo that would arise to ac-
cominodate the phason deformation (which one takes to
be static since rri is so large), and then determining the ef-
fective elastic energy for phonon fluctuations about uo.
This effective elasticity will be found to be identical to
that which obtains in the absence of phasons and, hence,
isotropic. Moreover, the relaxation of the phasons to the
equilibrium value in the presence of an applied stress
should proceed qualitatively in the same way whether the
phason field is initially zero or nonzero, although it may
differ in detail. The exact form of this time dependence
will be discussed elsewhere. '

In more familiar incommensurate systems =.g., the
mercury chain salts' ' —the phason mode (which in
that case corresponds to the relative motion of sublattices)
can propagate at intermediate wave number, ' ' ' ' al-
though at sufficiently sinall wave number, it is always dif-
fusive. ' ' In quasicrystals, such estimates as can be
made of viscosities, elastic constants, and vacancy mobili-
ties suggest that there is no wave-number regime where
phasons propagate. It should also be noted that in a fun-
damental sense the phason variable does not couple reac-
tively to a conserved velocity field and is, therefore, al-
ways diffusive at hydrodynamic frequencies as first noted
by Finger and Rice' for conventional incommensurate
systems.

The slowness of the phason mode has remarkable
consequences for dislocation motion. The fact that any
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dislocation has both a phonon and a phason part means
that a moving dislocation must carry both fields with it.
This adds tremendously to the drag on the dislocation,
making it of order 10' larger than in pure conventional
crystals. This suggests that a perfect quasicrystal would
be impervious to plastic deformation dislocations would
behave as though pinned in a work-hardened material.
We shall discuss this in another article. '

The complete zero-temperature phonon and electron '

spectra are expected to have densely spaced gaps. Calcu-
lations by Ostlund' for one-dimensional quasicrystals in-
dicate, however, that the gap size for phonons tends to
zero faster than q, justifying the traditional hydrodynamic
treatment presented here.

One piece of speculation is in order. In a one-
dimensional incommensurate system (the discrete
Frenkel-Kontorova model' ), Aubry ' ' and Peyrard '

have shown that anharmonic effects can pin the sliding
mode (analogous to the phasons here), rendering it non-
hydrodynamic. If a similar pinning transition were to
take place for the phasons in a quasicrystal, the dynamics,
especially of dislocations, would change dramatically. We
do not know if such a transition is possible. All state-
ments in this paper apply only when this transition has
not occurred.

The remainder of this paper is organized as follows:
Section II presents elasticity theory in a coordinate system
more tractable than that used in Ref. 6. Section III
derives the hydrodynamic equations, and Sec. IV discusses
the mode structure. Section V ventures beyond the hydro-
dynamic domain to discuss the possibility of propagating
phasons in quasicrystals. The Appendix discusses the ef-
fective elastic energy. The detailed calculation of the
icosahedral elastic energies using group theory will be
presented in a forthcoming paper.

Cx~ ——G( —sinu, O, cosa),

Csp ——G ( s111lx,0,c os cK ),
Cx3 ——G (0,cosa, sinu ),
Gq ——G( —cosa, sina, O),

G5 ——G( —cosa, —sina, O),

Cx6 ——G (0, —cosa, sina),

(2.2)

where sina=(1+r )
' with w=(1+v 5)/2 the golden

mean. The six independent phases p„can be
parametrized by two three-component fields u and w ac-
cording to

P„=Cx„u+H„w,
where

(2.3)

H) ———G), H2 ——02, H3 ——G5,

H4 —G3 H5 ——G6, H6 ——G4 ~

(2.4)

u is the familiar displacement field, and w represents rela-
tive motion of the constituent density waves. The fields u
and w transform under different three-dimensional repre-
sentations of the symmetry group of the icosahedron with
u transforming like a vector. The orthogonality proper-
ties of the vectors G„and H„can be used to express u
and w in terms of the P„'s:

are much simpler in a coordinate system shown in Fig. 1

in which the z axis bisects one of the edges of an
icosahedron. The new coordinate system is obtained from
that used in Ref. 6 by a rotation through an angle
a=31.72' about the y axis. The coordinates of the basis
vectors are

II. ELASTICITY THEORY FOR QUASICRYSTALS u=G g Ci„g„, (2.5a)

We review briefly the construction of the elasticity
theory discussed in Ref. 6. Consider a quasicrystal Q in d
dimensions with density

p«) = & poe' '= X I pG I
e

GELR GF L~
(2.1)

where I.z is the reciprocal lattice for Q and
l pG l

and PG
are, respectively, the amplitude and phase of the density
wave at Cx. Let k be the number of independent incom-
mensurate lengths in Q. I.~ can then be constructed by
taking linear combinations with integer coefficients of the
vectors Cx„ in a minimal set B (the basis) containing kd
elements. The kd phases P„of the complex order param-
eters po of Q provide a complete description of the
long-wavelength, low-energy mechanical deformations of
Q, as can be seen, for example, from Landau theory.

For the three-dimensional icosahedral quasicrystal, to
which we will hereafter restrict our attention, the basis B
consists of six vectors G„, n =1, . . . , 6, which are con-
veniently taken as the vectors pointing to the six vertices
in the upper half plane of an icosahedron. In Ref. 6, a
coordinate system was chosen with the z axis along the
vector G&. We have found that algebraic manipulations

w=G g H„P„. (2.5b)

F(u, w)=F„+F +F„ (2.6)

where, in terms of the Fourier-transformed fields u(q)
and w (q), the various pieces of the elastic energy are

F„=J [—,(A, +2@)qgqj.
(2m )

+ , p(q 5J —q;q~ )]u;(—q)uj(—q),2

d3F„=f [K,q 5; I+K~(Jq)]m;(q)w (Jq),
(2m )

CJ qu;qwjq
(2m )3

with

(2.7)

(2.9)

The transformation properties of u and w under the
icosahedral group, along with constraints of translational
and rotational invariance and the fact that the P„'s are hy-
drodynamic allow us to construct ' the harmonic elastic
free energy F(u, w) for the quasicrystal. We obtain
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and

EJ(q) =E2~

C~~(q) =Kg~

& Vx +9y +~Vz
—2T gygz

—2~Vx lz

2&9'x9'z

—21 gy gz

&Vx &Vy—+~Iz

—2dgy gz

Cx +~9y +& Cz

2~Ox ly

27 g~ gy
3

—t gy

2&qyqz

—2r Ox'
2~Vx ly

~Ox +'r fy +9z

~9x 're +'r 9z

—2'„qy
2& Cx9'z

3

(2.10)

(2.11)

Stability requires p & 0, A, & 0, E» 0, K i +K2 & 0, and
2p(Ki+E2) —Ki &0.

Equations (2.7)—(2.11) give the elastic free energy for
distortions in both u and w. The equilibrium response to
external stresses is controlled by an effective elastic energy
F,g(u) obtained from F(u, w) by allowing w to relax to its
equilibrium value determined by the Euler-Lagrange
equation 5F/5w(x)=0 in the presence of a nonzero u.
Alternatively, E,ff can be obtained by integrating out the
w degrees of freedom:

exp[ —F,ff(u}]= J d (w)exp[ —F(u, w) ] . (2.12)

The form of Fzff and its implications for certain simple
mechanical experiments are given in Appendix A. It is
important to note that E,gf is not isotropic, i.e., it is not
characterized simply by a bulk and a shear modulus. The
coupling between shear strains has a complicated angular
dependence. In order for this anisotropic form to be real-
ized, it is necessary for the w field to be able to relax to its
equilibrium value in the time of an experiment. As dis-
cussed earlier and in Sec. III, w relaxes very slowly, at a
rate comparable to that of vacancy diffusion (diffusion
constant' & 10 ' cm /sec). Thus for many (perhaps
most) experimental systems, there will be a wide range of
time scales over which the observed elastic response is iso-
tropic. In samples that are thin enough, however, a

moderately patient experimentalist should be able to ob-
serve the anisotropic response in single crystals.

+F(u, w) (3.1)

where v=g/p is the hydrodynamic velocity field, po the
quiescent density, 5p=p —p, 3 ' is the compressibility,
8 couples the density to quasilattice dilations, and
F(u, w) is given by Eqs. (2.7)—(2.11}. Note that there is
no term coupling 5p to V w since V w is not a scalar
under the icosahedral group.

For a general set [P j of classical hydrodynamic vari-
ables governed by a Hamiltonian H, the equations of
motion are

III. DERIVATION OF HYDRODYNAMIC
EQUATIONS

The hydrodynamic variables"z for quasicrystals are
the conserved mass and momentum densities, p and g,
and the "broken-symmetry" fields u and w. The first two
relax slowly at small wave number because their zero-
wave-number components are constants of the motion,
and the second two because the restoring force for spatial-
ly uniform changes in them is zero. The Hamiltonian
governing the dynamics of these variables is, in the har-
monic approximation,

a= f d"x[ ,'pU'+ -,'a(5p/-p, )'+a(5p/p. )V u]

I

+ J [y.(x),yyx')j, d'x —ja'x, [y.(x},ygx }j+r.~ 5 =0, (3.2)

f P„(x),g(x') j =[—Cx„+VP„(x)]5(x—x'), (3.3)

where [, j is the classical Poisson bracket and I ii is
the matrix of kinetic coefficients. To obtain the complete
set of hydrodynamical equations for quasicrystals from
Eq. (3.2), we need the Poisson brackets among the vari-
ables p, g (or v=g/p), u, and w. Those involving the
first two are known-from the hydrodynamics of simple
fluids, while the derivation of those for u and w is
presented below.

Since the Poisson brackets depend only on the defini-
tion of variables and not on the form of the Hamiltonian,
we can state that

exactly as in the case of a single density wave such as en-
countered in a smectic liquid crystal. ' The equations
jg„(x),P (x') j = [P„(x),p(x') j =0 are trivially satisfied
since they involve only the coordinates and not the mo-
menta of the constituent particles. The expressions (2.5)
for u and w in terms of ( P„j then imply

[u;(x),gj(x') j =[—51+V;uj(x)]5(x—x'),
(3.4)

[w;(x),gj(x') j =[V;m~(x)]5(x—x')

since Q„G«FIxj ——0 and Q„G„;G„J——g„H«H„/ ——G 5,J.
'

The hydrodynamic equations obtained from these rela-
tions are
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B,p+V g=0, (3.5a)

(a, +v.V}u, +1.„—U,.=0,5H
"

5u;

(8, +v.V)w;+1 =0 .5H
5w;

(3.5c)

(3.5cl)

That u and w play very different roles in the dynamics
is evident from the absence of a reactive (c),w-v) cou-
pling of w to the hydrodynamic velocity field. This is be-
cause w is insensitive to spatial translations. Equations
(2.1) and (2.3) tell us that a rigid shift (x~x+ const) of an
undistorted quasicrystal gives rise to a uniform u but to
no w field. We should expect that the time dependence of
w will be diffusive, not oscillatory, at long wavelengths,
and we shall see in the next section that this is so. With
these preliminaries, we now note some features of the
equations of motion and estimate the magnitudes of some
of the parameters therein. Equation (3.5a) is simply the
continuity equation expressing conservation of mass.
Equation (3.5b) is a generalized Navier-Stokes equation or
a local version of Newton's law equating the rate of
change of momentum to the sum of the forces. The
forces, from left to right, are viscous drag, elastic forces
due to distortions of the quasilattice, and pressure. The
viscosity is constrained by icosahedral symmetry to be iso-
tropic:

c),gi+V (vg;) V—J(rl jklV'kgl }

5H 5H 5H= —(5;.—V;u. ) +(V;w ) —pV';''5uJ ' '5w, '5p '

(3.5b)

should, therefore, be a total of eleven peaks in the hydro-
dynamic correlation functions. Eight of these are the
familiar" peaks of an ordinary solid: two pairs of trans-
verse and one pair of longitudinal sound peaks, a vacancy
diffusion, and a heat diffusion peak. The remaining three
are diffusive and arise from the rearrangements of the
icosahedral structure described by w. The positions and
widths of these peaks at long wavelengths are determined
from the equations of motion (3.5) (ignoring nonlineari-
ties). These linearized equations of motion when
Fourier-transformed in space and time read

—ico5p+i q'g =0,
icouzgz .——/po I „—[pq ur+P(q)C(q)w],
icou—L ——gL /po —I „[(A,+2p)q ul +Q.C(q)w

iBq—(5p!po)],

icogT 9Tq gT —
S q'u~ —P(q)«q)w

(4.1)

(4.2)

(4.3)

(4.4)

icog—L
———gLq gL —(A, +2@ B)q uL—, —q C(q)w

—i(a B)q5p/po, —
i cow =——I [M(q)w+ Cz(q)u],

(4.5)

(4.6)

and

ql qJP..—5.. A. . =5..sJ—
q

(4.7a)

where here and hereafter an underline represents a matrix,
the superscript T denotes the transpose matrix, and the
subscripts T and L denote parts parallel and perpendicular
to q. P is a transverse projection operator with com-
ponents

4.

ijijkl ( cjL 3 gT }5ij5kl M=K]I+X, (4.7b)
2+rjr(5ck5ji+ 5ii5jk 35;,5ki »— (3.6)

IV. HYDRODYNAMIC MODE STRUCTURE

The total number of hydrodynamic variables in
icosahedral quasicrystals is eleven (g, u, w, p, and the en-
ergy density e which we will not discuss in detail). There

where gL and g~ are the longitudinal and transverse
viscosities. The somewhat unfamiliar Vu(5H/5u ) and
Vw(5H/5w) terms in the elastic forces arise from the
same pieces of the Iu, vI and Iw, v] Poisson brackets as
do the convective (v Vu and v Vw) terms in the u and w
equations. The terms I „(5H/5u ) and I' (5H/5w)
represent a diffusive relaxation of the phase variables
without a macroscopic velocity field. Since they have the
same physical origin, it is reasonable to assume that I is
of the same order as I „. We already know (see Ref. 11 )

that 1 „ is simply a vacancy diffusion mobility. The dif-
fusion constant for vacancies, given by I „ times a shear
modulus, is of order 10 ' cm /sec in typical metals. '

The w field should thus also relax with a diffusion con-
stant of that order. This implies a relaxation time of 10'
sec for a 1-cm sample. The consequences of this small
phason diffusion constant for dislocation motion, howev-
er, appear to be quite dramatic and will be discussed in a
separate paper. '

Inserting this expression for w into Eqs. (4.1)—(4.6) leads
after some manipulations (keeping in mind co-q) to the
effective Fourier-transformed equations of motion:

( —ico+I'„ji,q )uz =gr lpo

( —ico+rjzq)gr + [pq I.+( i co) 'I ~PCCr—]ur =0
(4.9a)

(4.9b)

where I is the unit tensor. Note that M and C are both of
order q .

The speeds of the sound modes are isotropic at small
wave number and can be calculated by setting to zero all
dissipative coefficients and the fields w in the equations of
motion. This is because on the time scales corresponding
to propagating sound (that is frequency co —wave num-
ber q), w, being diffusive, does not respond at all to lowest
order in wave number. It does have an effect at the next
order in wave number: It contributes to the damping of
sound waves, rendering it anisotropic despite the isotropy
of the viscosity tensor (3.4). To see this, we simply solve
the equations of motion (4.1)—(4.6} for co-q. In this re-
gime, the term I E'(q)w in Eq. (4.6) is negligible in com-
parison to —icow at small q so that

i I ~C~(q—)w= U. (4.8}
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for transverse sound and

it—05p+iqgL, ——0,
( t'to—+gt, q')gL, +t (&+2@+& 2&—)q(&p/po)

(4.10a)

for longitudinal sound, with

pocL, =A +A +2p —2B

and

(4.11b)

2 r.
~0 =cTq ——,t'q (gT+I „p)+ A, , a=1,2

pq4

(4.12a)

for the two polarizations of transverse sound with

(4.12b)

where the An's (-q") are the two nonzero eigenvalues of
PCCrP. [Equation (4.12a) is of course just Eq. (1.2a)
with y (q)=gT+I „p+(21 /pq )A, .] The attenuations
of both transverse and longitudinal sound are sensitive to
the presence of icosahedral order through the terms A, ~, A,2,
and TrQCCr. In fact, A, i and A,2 contain invariants of
higher than sixth order in q, while their sum
A, i+f2 ——TrPCCT as well as TrQCCr are of sixth order in

Since there exist anisotropic icosahedral invariants of
sixth order in q, one might expect the attenuations to be
anisotropic, and indeed they are. There are precisely two
independent icosahedral invariants of sixth order in q.
They can be taken to be

~ q ~, which is isotropic, and

—(I ~/toq)Tr(QCCr)(5p/po) =0 (4.10b)

for longitudinal sound. Dissipative cross couplings of gz
to p and of gL to uT, which the substitution (4.8) will gen-
erate, have been neglected since they do not affect the at-
tenuations to leading order in q. Note that the term
PCCT/ice in Eq. (4.9b) is of order q (recall C-q ) and is
consequently of one order higher in q than the pq I term.
Likewise, [Tr(QCCT)/toq] q-is one higher order in q
than t(A+A, 2B)q—in Eq. (4.10b). As a result, both of
these terms can affect the dispersion relations only at
second nontrivial order in q; i.e., they alter the leading
damping terms, not the propagating ones. Note that
without these terms (PCCr and QCC ) the equations of
motion are those of an isotropic solid. This implies that
the sound speeds of the full equations are isotropic. Solv-
ing for the eigenvalues to(q), we find for q~0

I ~ Tr(QCCT)
co =cgq — 'gi q + (4.11a)

pocI.

have sound speeds which are isotropic but sound-wave at-
tenuations which even at small q reflect the icosahedral
symmetry of the quasicrystal.

The diffusive modes come from w, the energy density e,
and the longitudinal part of u. Similar power counting
can be used here, with cu —q, to simplify the equations
somewhat. One is still left with a fairly complicated 4)&4
matrix to diagonalize since e essentially decouples from u
and w. We, therefore, expect thermal diffusion to be iso-
tropic; vacancy and w diffusion will reflect icosahedral
symmetry in a more complicated way than does sound at-
tenuation. The w field is expected to relax very slowly, as
we remarked, with a diffusivity comparable to that for va-
cancies. The effective equations of motion for phason and
vacancy diffusion, as well as the slow relaxation of the
phasons in response to an applied stress, will be discussed
in Ref. 13.

V. BEYOND HYDRODYNAMICS

fg'n(x) Nm(x )I =[G&nm Gn ~N—m(x)]@x—x') (5.1)

where Gn=Gn/G. When dissipation is included, the
linearized equations for P„and u„ in the incompressible
limit become

In the previous sections, we found that the modes asso-
ciated with the phason field w are diffusive rather than
propagating. This is a result of friction that opposes rela-
tive motion of the incommensurate mass-density waves.
If this friction were turned off, then the modes associated
with w would be propagating. Alternatively, if the fric-
tion coefficient coupling the incommensurate waves is
small, there may exist a regime of wave numbers where
the w modes are effectively propagating modes as has
been observed in mercury chain salts. '

We will, therefore, derive dynamical equations for the
icosahedral quasicrystal that are valid in the limit when
friction is zero and that reduce in the hydrodynamical re-
girne to the equations derived in the previous sections
when friction is nonzero. Our analysis will follow that of
Ramaswamy and Mazenko for the analogous case of
longitudinal sound in a fluid adsorbed on a substrate. In
the absence of dissipation, the icosahedral quasicrystal can
be viewed as a superposition of six mass density waves
that can slide frictionlessly across each other. This means
that there are six independently conserved momenta
P„, n =1, . . . , 6 with associated densities g„(x). The
g„(x):—pu„(x) are then the hydrodynamic fields satisfying
the Poisson bracket relation,

Is ——(I+~ ) 'g(Gn q)'

which is not. In terms of these,

q Tr(QCC )=E'3( —9q +10I6) .

(4.13)

(4.14)

B,P„+I„—Gu„=O,6H
m

d g +G& +'y (q)g =05H
n

(5.2a)

(5.2b)

where I „and y„(q)=y„+A,„q are dissipative coef-
ficients. These equations clearly contain three extra
momentum densities not appearing in the hydrodynamical
equations of Sec. III. Of these six, however, only the vec-
tor

The anisotropic part of the viscous damping (from esti-
mates in Sec. III) is probably smaller in magnitude by a
factor of 10 ' than the isotropic part. It is nonetheless
worth remarking that quasicrystals should, therefore,
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g—:G 'QCs„g„ (5.3) der 1 cm /sec, we find that normal systems are unlikely to
be anywhere near the underdamped regime.

(the hydrodynamic momentum density) is a slow variable.
The remainder, packaged most conveniently as

gw—=G 'QH. gn (5.4)

a,u —v+1. H
Q

B,vr —v +I" =0,H
5'

B,g —(gVVg)+ =0,5H

(5.5)

(5.6)

(5.7)

5H
d~gw+ygw+ (5.8)

must decay with a lifetime that remains finite for q=O.
Clearly v —=g /po is the velocity associated with the
rearrangeinents coming from the w field and involves
internal relative motions even at q=0. It is thus reason-
able that it decay non-hydrodynamically (and indeed rath-
er quickly, as we shall see). The fact that v cannot decay
at @=0, together with the observation that u and w carry
irreducible representations of the icosahedral group, im-

plies that I'„ is of the form I „Cx„G +I" H„H and

y„at q=O is of the form yH„H . From this, we ob-
tain the equations of motion:
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APPENDIX: EFFECTIVE ELASTIC ENERGY

w(q) = —M '(q)Cr(q)u(q)

where M is defined in Eq. (4.7b), and

(Al }

In this appendix, we derive and discuss the effective
elastic energy for u alone. This energy describes the static
response of the system to externally applied stresses on
time scales long enough for the phason field w and the
density p to have relaxed to their equilibrium values in the
presence of a nonzero u. These equilibrium values are, of
course, those which minimize the elastic Hamiltonian of
Eqs. (2.6}—(2.11). Performing this minimization, we
have, in Fourier space

In the limit of low frequencies, Eq. (5.8) reduces to
B5p= —po V u. (A2)

1 5H
y(q) 5w

'

the effect of which is to modify Eq. (5.6), giving

5H
B,w+ I" +— =0,

5w

(5.9)

(5.10) H,rf(u)= —,'u C're

with the effective elastic matrix

(A3a)

Note that 5p relaxes to this equilibrium on the same time
scale as w since the relevant process is vacancy diffusion.
Inserting the results (Al) and (A2) into (3.1), we obtain an
effective Hamiltonian for u alone:

which is identical to Eq. (3.5d) with

I =I" +—.1

y
(5.11)

C'f~=pq P(q)+(1,+2p B /A )q Q—(q)

—C(q)M '(q)C~(q) . (A3b)

If, however, we can make observations at frequencies and
wave numbers such that co »y(q)-y+kq [so that y(q)
can be neglected in Eq. (5.8)], then the three diffusive w
modes should turn into three pairs of propagating
phasons. In fact, in this regime, the u and w modes are
highly coupled and do not separate cleanly into phonons
and phasons. They are instead six pairs of propagating
modes with anisotropic velocities. Does this regime existed

Probably not, since the physics of the situation suggests
that y is much too large. The argument is analogous to
that which determines whether a fluid adsorbed on a sub-
strate can display sound modes. z Let the speed of the
phasons in the absence of dissipation be c, which is of or-
der (X/p)'~ where K is a typical shear modulus in a
crystal. The frequency co is then cq. In order that the
mode be underdamped, we require that cq & y+Xq, but
also that Aq & cq. This is neuer possible if 4y & c /A, . If
we put in nuinbers, estimating c y

' to be of order of
typical vacancy diffusion constants, of order 10
cm /sec, and A, to be of order of typical viscosities, of or-

The explicit expression for C'rr is so complicated as to be
useless. For practical purposes, it is far more efficient to
calculate C and M for the particular values of q needed
and then perform the matrix operations in (A3) numeri-
cally.

A number of important observations about the effective
elasticity can be made

(1) It is proportional to
~ q ~

as in conventional solids
with an angle-dependent prefactor that does not vanish in
any direction provided the stability conditions following
Eq. (2.11) hold. This implies that all the power counting
one is familiar with for conventional crystals applies here:
Stresses are proportional to strains, (

~
u(q)

~
) -q

(where ( ) denotes a thermal average) and dislocation en-

ergies are linear in the size of the system in three dimen-
sions, logarithmic in two. No surprises are likely in either
the effect of the phasons or dislocations on long-ranged
order or in the nonlinear coupling of hydrodynamic
modes to thermal fIuctuations.

(2) The effective elasticity is, nonetheless, non-analytic



32 HYDRODYNAMICS OF ICOSAHEDRAL QUASICRYSTALS 7451

p„0 0
C'rr(qz) =q 0 py 0

0 0 A,,g
(A4a)

with

p„=p K3v (K—2+Kid)

ps p Ki[——r (K—i+KqH)]

A,,rr= A, +2@ & /A ——Ki(Ki+K2)

(A4b)

'(A4d)

in q. This is because M ' contains an overall uncanceled
factor of [detM(q)J ' which is the reciprocal of a poly-
nomial of sixth order in q. This nonanalyticity prevents
us from interpreting the effective elastic energy as an elas-
tic tensor times two strains; i.e., we cannot write
H' = ,'C—jkiV;uJVt,u'i .Thus the symmetry arguments
which implied that the u —u part of the full elastic energy
was isotropic do not apply to the effective energy for u
alone.

(3) The effective elastic energy is anisotropic. For ex-
ample, for q=qz,

H= —,'aC~ (s)
'

q, u;(q, )uj(q, ) —af.u(l)S l S J S (A5)

where a is the area of the slab orthogonal to s. Fourier
transforming back to real space, we have

still macroscopic, of course); and the slab normal s can
point in any direction relative to the quasicrysta11ine coor-
dinate axes. %'e now imagine statically applying a uni-
form force f per unit area to one side of the slab while
holding the other fixed, and ask for the ultimate displace-
ment u(l) of the surface of the slab in response to f. As
discussed in the text, for times t «~z, the phason relaxa-
tion time, the response is isotropic and characterized by
the bulk and shear moduli A, and p of Eq. (2.7). Thus
these two parameters can be determined from the t «~z
response just as they would be for an isotropic crystal.
For t »r~, we can calculate the response from the effec-
tive elastic energy by noting that u(r) should, by virtue of
the experimental geometry, depend only on s, the distance
along the slab normal. As a result, the spatial Fourier
transform u(q) will be nonzero only for q along. s. Furth-
ermore, by the power counting discussed above,
C„'„(qs)=C„'„(s)q . Thus the effective elastic energy
reduces in this geometry to

The anisotropy is now manifest in the fact that p„&ps.
The effective elastic energy cannot be characterized by a
single shear modulus. Analysis of other directions of q
reveals that for a general q, bulk and shear distortions are
coupled.

(4) The total number of elastic constants needed to
characterize the effective elastic energy is four: namely,

p, A, +2@—8 /2, K3/K2, and Ki/Kq.
Because of the unusual nature of this effective elastic

energy —in particular its nonanalyticity —its interpretation
may seem obscure to those familiar with conventional
elasticity. To elucidate its operational significance as well

as to give a straightforward experimental prescription for
measuring the four independent elastic constants, we con-
sider the case of mechanical measurements done on a
monodomain sample of quasicrystal in the thin-slab
geometry of Fig. 2. The width 1 of the slab is taken to be
much smaller than all other linear dimensions (though

r

d ll CeP(~) d llI

ds ds
—af u(l) . (A6)

E=a —u (l)C'rr(s)u(l) —f u(l)
21

(A7a)

Minimization of this equation with respect to u(l) gives
the desired displacement in response to f:

u(l)=[C' (s)] 'f/ . (A7b)

Again, the simplest way to apply this formula in practice
for arbitrary directions of s is to calculate C'~r(s) and
K(s) numerically from Eqs. (2.10) and (2.11) and then nu-
merically perform both the matrix operations in Eq. (A3)
and the inversion in Eq. (A6). For the special directions
discussed earlier, namely s=z, the matrices are simple
enough to calculate analytically. We find

The static u field which minimizes this Hamiltonian is
trivially shown to be a linear function of s: u(s) =u(I )s/I
for which the total energy is

S
11 u„s (1)=p„y'f„y l,

ug(l) =A,,gg f,l

(A8a)

(A8b)

FIG. 2. The thin-slab geometry for determination of elastic
constants.

where the effective shear and bulk moduli p„„and A,,rr
are given by Eq. (A4). Equations (A6) justify our refer-
ring to them as bulk and shear moduli.

It is now apparent that mechanical measurements done
in this single experimental geometry are sufficient to
determine all four of the elastic constants needed to
characterize fully the effective elastic energy. Recall that
the initial response for t «~~ is isotropic with shear and
bulk Lame coefficients p and A, given by Eq. (2.7). Thus
measurements of this response determine p and A, . Now,
by waiting until t»~z, p, p~, and A,d~ can be deter-
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mined via Eq. (2.8a). p„and p~ together with the
knowledge of p from measurements for r « ~z fix
I( 3 /Kz and E, /ICz, A,,rf then fixes A, +2M =8 /A. Thus
the elastic parameters are now completely determined, and
the elastic response for any other slab orientation is given
by Eq. (A7), which now contains no further parameters
needing adjustinent.

The detailed time dependence of the relaxation of u and
w to their final equilibrium values will be discussed in
Ref. 13. We note here that for short times (t«rz),
changes in u and w from their initial values are propor-

tional to (t/rz)', whereas for long times deviations
from their equilibrium values are proportional to
exp( t /—~z ).

Note added: The basic diffusive hydrodynamics for the
w modes and the result that the longitudinal and trans-
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