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Systems which obey purely dissipative equations of motion can exhibit behavior normally associ-
ated with inductive (i.e., inertial) response. An experimentally well-studied example is the transient
current oscillations that can occur when a voltage pulse is applied to a sliding charge-density wave.
Detailed numerical studies of the nonlinear response of a purely dissipative harmonic chain in a
sinusoidal potential are presented in order to understand the effects on the transient current of
strong pinning potentials and of sudden large changes in the driving field. The results are compared
to the experimental results for the charge-density-wave systems K, ;M0O3, NbSe;, and TaS;.

I. INTRODUCTION

The dynamics of charge-density waves (CDW’s) have
been intensely studied for over a decade, and many experi-
ments have shed light on their peculiar conduction proper-
ties.! The motion has been modeled using the nonlinear
first-order differential equation®

M= ‘szu(f)

+ d®(r+2Zu (r,t
dt dz

))cos(Q-r)-i-F(t),
(L.1)

where Q in the CDW wave vector, u(r,t) describes the
distortion at position r and time ¢, K is the CDW elastic
constant, ® is a random pinning potential (presumably a
result of impurities), and F is a time-dependent but spa-
tially uniform force from an externally applied electric
field. It has been demonstrated that this purely dissipa-
tive but spatially extended and nonlinear system in an in-
homogeneous environment responds to applied fields in a
manner usually associated with inertial systems.> One sig-
nature of the apparent inertia of the extended deformable
model of a CDW is an oscillatory response to sudden
changes in the driving voltage (or current), or “ringing.”
In Ref. 3 it was shown that when the CDW velocity is
large, an arbitrarily small change in the voltage can in-
duce an oscillatory current response. This theory indi-
cates that in the limit of weak impurity pinning, applica-
tion of a pulse results in oscillations for basically all start-
ing configurations, as long as the final field is above the
threshold field for CDW conduction. Suggestive experi-
mental results have been reported for K 3MoO; (Ref. 4)
as well as TaS; (Ref. 5) and NbSe; (Refs. 6—8), but in

34

these experiments large voltage pulses were applied to
pinned CDW’s. When pulses were applied starting from
steady-state configurations for fields well above threshold,
no transient oscillations were observed.” These results
were interpreted in terms of a “dephasing” picture in
which the pinned CDW consists of domains that are all in
relative minima of the pinning potential. As the field is
turned on, initially these domains all oscillate at the
narrow-band noise frequency in phase, but as the CDW
moves, they lose phase coherence and the oscillations
disappear. In this picture, one expects transient oscilla-
tions only if the initial CDW state is below threshold.

The purpose of this paper is to examine the relation be-
tween the perturbation theory of Ref. 3 and the dephasing
picture. The two pictures are different visualizations of
the same phenomenological equation of motion, so they
are not necessarily incompatible. Since ringing has been
observed for starting fields that are slightly above thresh-
old,” simple dephasing is not a completely satisfying ex-
planation of all the data.

The theory in Ref. 3 is only valid for small changes of
the field well above the threshold field F,, and it predicts
oscillations that are extremely small, in this limit. Since
the magnitude of the oscillations is roughly proportional
to the typical size of the CDW deformations, the failure
to observe ringing for starting fields well above threshold
may merely reflect that the distortions induced by going
below (or very near) threshold are much larger than those
induced by starting at very large fields. Whether the
starting state being pinned plays a vital role can be ad-
dressed by starting the system from strongly perturbed
but random configurations and comparing the results
with the current characteristic obtained when the system
is started from the ground state in zero field. However,
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this question cannot be answered using a perturbative
analysis. In addition, even the linear response near
threshold is complicated to calculate’ (involving high-
order perturbation expansions), so that interpretation of
the results is not straightforward. Since ringing experi-
ments have been carried out over a large range of pulse
amplitudes and final velocities, it is worthwhile to investi-
gate these effects. This paper describes numerical investi-
gations designed to address this situation.

For computer work it is advantageous to simulate a
one-dimensional discrete model rather than the three-
dimensional continuum model (Eq. 1.1), so many workers
have examined variations of the coupled equations of
motion'0— 4

dé;/dt=¢; .1 —26;+$;_— Usin(B;+¢,)+F (1) ,
(1.2)

where ¢; can be interpreted as Qu (R;) at the posmon R;

of the jth impurity, U is the strength of the pinning po-
tential, and F is the applied force which is assumed to be
spatially uniform but time dependent. (The equation has
been scaled so that the elasticity coefficient is unity.) The
impurities tend to lock the phases in at random values—
B;j. The assumptions necessary to obtain these discrete
equations of motion from the continuum equation (1.1)
are described in Refs. 10 and 11. Actually, Egs. (1.1) and
(1.2) differ not only because (1.2) is discrete, but also be-
cause (1.1) is written in the frame of reference of the
CDW, while (1.2) is in the laboratory frame of reference.
In addition, using a one-dimensional system rather than a
three-dimensional one can substantially affect the results.
These differences affect the oscillations (as calculated us-
ing linear response theory) in ways that are discussed in
the Appendix. However, the gross features that are of
primary interest for experiment are expected to be repro-

duced faithfully.
We study the response to a pulsed force:
F(t)=F,+AF0(t). The questions we wish to answer are

the following.

(i) How do the oscillations change when the final force
is near threshold?

(ii) How does increasing the pulse amplitude AF affect
the oscillations?

(iii) How does the “ringing” descrlbed here relate to the
“dephasing” picture described by Zettl,® Parilla and Zettl 7
and Brown, Griner, and Mlhaly"

Even using the simplified model (1.2), answering these
questions involves substantial computational difficulties
because any finite simulation exhibits narrow-band noise
(NBN), or an oscillatory current response to a dc voltage.
Distinguishing the transient oscillations from the steady-
state one is difficult and tedious, since they both occur at
the same frequency (as shown below). Therefore, in this
work a modified model was used for which the NBN has
a much smaller amplitude and a frequency different from
that of the transients.

We consider the response of an overdamped extended
harmonic chain in the presence of an incommensurate po-
tential to a spatially uniform but time-dependent force.
The (again, purely dissipative) equation of motion is given
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by Eq. (1.2) with a particular choice of the preferred
phases B;:

B;=2m{wj (mod )] , (1.3)

where o is an irrational number. Although real CDW’s
are almost certainly pinned by impurities, this
incommensurate-pinning model appears to reproduce
many features of the randomly pinned case.”!>!® The
most important advantage here is that the transient oscil-
lations can be distinguished from the NBN, which occurs
at a much higher frequency. Also, the NBN amplitude is
much smaller than that of a randomly pinned system (its
size is typically 10~ of the total current in these simula-
tions, compared to about 20% for a comparable system
with random pinning). Other advantages are that the nu-
merical work proceeds more quickly than for a randomly
pinned system and that finite-size effects can be charac-
terized systematically and reliably.'?

Thus, we will answer the questions outlined above for
this incommensurate pinning model. The results indicate
that nonlinear effects qualitatively alter the transient os-
cillations. Close to threshold, one often observes harmon-
ics in the ringing. However, harmonic production appears
to depend on details of the pinning potential. Using large
force pulses enhances the oscillations substantially, espe-
cially if the system is initially pinned. It appears that this
phenomenon reflects the fact that, in general, the ringing
is much more pronounced when the configuration at the
start of the pulse is far from steady state. Although large
oscillations can be obtained by using arbitrary initial con-
ditions, it appears that experimentally the only way to in-
duce large oscillations is to start the pulse from a metasta-
ble configuration below threshold. Larger pulses can also
enhance the production of harmonics, though again this
may depend on details of the pinning potential. The oscil-
lations discussed here are transients in the voltage-driven
configuration and are unrelated to the dynamic oscillatory
instability reported in the current-driven configuration by
Sneddon and Cox.!”

The paper is organized as follows. In Sec. II we discuss
the oscillations that are present within linear-response
theory well above threshold. This section uses methods
very similar to those previously described for the random-
ly pinned model, and the results are very similar to those
obtained in Ref. 3. Predictions of how the oscillations de-
cay as a function as the commensurability [the number ©
in Eq. (1.3)] is changed are also made. Section III de-
scribes the numerical results; the predictions of perturba-
tion theory are verified where they apply, and nonpertur-
bative features are investigated. Finally, in Sec. IV the re-
sults are summarized and their implications for experi-
ment discussed. The Appendix discusses the approxima-
tions made while going from (1.1) to (1.3) and how they
might limit applicability of this work to CDW experi-
ments.

II. PERTURBATION THEORY

We first do an analytic perturbative calculation analo-
gous to that performed previously for Eq. (1.1).> The per-
turbation theory performed for this system involves an ex-
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pansion about a state with no deformations. This limit
can be attained by making either the substrate potential U
very small or the applied force F;, and hence the steady-
state velocity v, very large. Expanding to second order in
U, the spatially averaged velocity response 7(f) to the
small field pulse AF O(¢) is

LS
— v;(t)
[Nf=1 !

o(t)= lim

it

© e'
_ € 2.1
AF f—aodw t(o—E(q =0;w) ’ ( )
where
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Heo)=" e tu-Dlg—0)  w-D(Q) ]

+ v, g——q) | , 2.2)

with Q =2mw. The quantity D(k)=2[1—cos(k)] de-
scribes the stiffness of the springs. The integral yields the
spatially averaged velocity:

U[v2—D*Q)]

(1) =O(1)AF
v v +DAQ)T

1+

UZ

———————e Tcos(vt ,
DT ET T R

(2.3)

with ¢o=2tan"'[v/D(Q)] and T'=D(Q) (with correc-
tions of order U?). Thus, within this perturbative linear-
response theory, the velocity oscillates at the “washboard”
frequency w=v. The rate of the decay is determined by
D (Q), which is smallest for Q near integral multiples of
2. The oscillations are basically a Fourier transform of
the frequency-dependent conductivity o(w), and Sneddon
has shown that for certain ranges of parameters Imo(w)
exhibits inductive dips.>'® This feature reflects the fact
that the entire CDW moves at velocity v, so the pinning
potential causes internal excitations at that frequency.
Because the system is purely dissipative, this means that
the modes at frequency w=v dissipate energy faster than
those at other frequencies. Note that the decay rate I is
smallest for nearly commensurate systems, where 1 —cosQ
is very small.

In principle, extension of the perturbation theory to
higher order in U is straightforward.> In analogy to the
second-order results, one expects to obtain features in the
frequency-dependent conductivity which lead to oscilla-
tions at frequencies w ~ nv, decaying at a rate T =D (nQ),
for integral n.

III. NONLINEAR EFFECTS

The perturbation theory outlined above is only valid for
small changes in the field well above threshold. By taking
more terms in the perturbation expansion, one can study
the effects of small changes in the field at low CDW ve-
locities, provided the system is close to dynamic equilibri-

um. However, if the initial state is far away in configura-
tion space from the equilibrium state at F,, the perturba-
tion series is not valid, even if infinitely many terms are
taken. Since experiments involve large changes in the
field, one is led to conduct numerical investigations of the
ringing. This section discusses numerical calculations
done to verify the results derived above in the regime
where perturbation theory applies as well as to investigate
nonperturbative effects.

A. Methods

The equations of motion (1.2) were integrated numeri-
cally by discretizing the time and using a second-order
Taylor approximation with the time step adjusted so the
positions were accurate to better than 107%. The initial
conditions were chosen as described below, and periodic
boundary conditions were employed. The simulations
were performed on systems with 34 degrees of freedom,
except for a few runs with 55 degrees of freedom to check
for finite-size effects. All calculations were performed on
a VAX-11/780 at AT&T Bell Laboratories.

B. Results

Since the effect of the pinning potential can be reduced
by moving the chain at a higher velocity, in many calcula-
tions the parameter U was fixed at the value 4 and F;| was
varied. [The threshold field F, for this value of U de-
pends on Q; it ranges from 4 for Q=0 to ~1.2 for
Q =2m(V'5+1)/2.] We exhibit plots of the velocity as a
function of time for different values of the parameters Q,
Fl’ and AF=F2—-F1

We first examine the results in the regime where the
perturbative calculation outlined in Sec. II is valid. This
limit applies when F| is very large and AF is small. From
Eq. (2.3) one expects the amplitude of the oscillations to
be proportional to U? AF /[v>+D?*(Q)] and the decay rate
I' to be D(Q)=2(1—cosQ). Figure 1 compares numeri-
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FIG. 1. Comparison of the perturbative expression (2.3) for
the velocity response to an applied force (the dashed line) with
the numerical result using U =4, F;=24, AF=1, and
Q =2m(55/34) (the solid line). The agreement is excellent.
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cal results for the spatially averaged velocity as a function
of time for U =4, F; =24, AF=1, and Q =2m(55/34) to
the second-order in U perturbative result (2.3). It is clear
that in this regime the low-order perturbation theory ac-
curately describes the numerical experiment. [The agree-
ment could be improved even more by noting that the os-
cillation frequency is determined by the final velocity
v(F,) rather than v(F;).] However, the amplitude of the
oscillations here is extremely small ( <0.1% of the mean
velocity), so they would be unobservable experimentally.

Figure 2 consists of plots for U=4, F;=11, AF =1,
and different Q values. Although the perturbation theory
no longer fits the numerical results quantitatively, it still
reproduces the major features of the oscillations. For this
case, the amplitude of the oscillations is about 0.5% of
the mean velocity.

We next consider the application of small voltage pulses
fairly near threshold, where one expects a high-order per-
turbative expansion to be valid. Although we have not
performed this high-order expansion, we qualitatively ex-
pect the features outlined above—oscillations at nth har-
monics of the washboard frequency (w=nv), which decay
at a rate I'=2(1—cosnQ). This expectation is verified
numerically: Fig. 3 shows the spatially averaged velocity
as a function of time for parameter values U =4,
F,=3.8, AF=0.2, and Q values Q,=27w,, with
©0,=45/34, w,=43/34, and w;=41/34. These values of
Q are particularly favorable for observing the third,
fourth, and fifth harmonics, respectively, since
D(3Q,)=D(5Q;)~0.03 and D(4Q,)~0.14. Compar-
ison with Fig. 2 shows that the harmonics emerge as the
velocity is lowered (this is expected since the higher-order
terms in the perturbation theory are larger for low veloci-
ty). The observed decay is consistent with the expecta-
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FIG. 2. Spatially averaged velocity versus time after a small
change in applied force for (a) 34 balls, 3 kinks
[Q =2m7(37/34)], (b) 34 balls, 5 kinks, (c) 34 balls, 7 kinks, (d)
34 balls, 9 kinks, and (e) 34 balls, 21 kinks. All simulations were
done with potential strength U =4, starting field F,=11, and
final field F,=12. The curves are offset vertically by v =0.25.
The results are described extremely well qualitatively by the per-
turbative prediction [Eq. (2.3)].
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FIG. 3. Spatially averaged velocity versus time after a small
change in applied force (F;=3.8;F,=4.0) for (a) 34 balls, 11
kinks [so D(3Q)~0], (b) 34 balls, 9 kinks [so D(4Q)~0], and
(c) 34 balls, 7 kinks [so D(5Q)~0]. The curves are not offset
vertically. The vertical lines under each curve denote the time
interval T =2 /7, the “washboard” period. The velocity exhib-
its oscillations at nth harmonics of the washboard frequency
o=y, where D(nQ) is small.

tions outlined above.

Finally we examine the nonperturbative regime where
the starting configuration is far from the final configura-
tion, so that an expansion in powers of small displace-
ments breaks down. One way to make a large change in
the configuration is to apply a large pulse AF to a steady-
state configuration. Figure 4 shows velocity oscillations
for U=4, Q =2m(55/34), and final field F,=F,+AF
=12 for different values of F; both above and below the
threshold force F,.!> The oscillations are much more pro-
nounced if F, is below threshold than if F, is very large.
However, it is not clear whether the difference is that the
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FIG. 4. Oscillations for Q =2m(55/34), final field F, =12,
and potential strength U =4 (so F, ~1.2) starting from steady
state with (a) F; =50, (b) F;=15, (c) F1=6, (d) F;=1.5, (e)
F,=1, and (f) F, =0 (ground state). The curves are offset verti-
cally by v =1.
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FIG. 5. Oscillations for Q =2#(55/34), final field F, =12,
and potential strength U =4, starting from (a) the steady state
for F,=50, (b) the ground state for F;=0, (c) a configuration
with the ¢;’s randomly chosen in the interval [ -2, 27], and
(d) the metastable state reached by allowing state (c) to evolve
with F; =0 for a time interval t =7. The curves are offset vert-
ically by v =1.

starting and ending configurations are farther apart in
configuration space if F; is below threshold compared to
F| very large, or if the large oscillations occur only if the
starting configuration is pinned.

In order to investigate whether any large perturbation
causes large oscillations or if starting from a metastable
configuration is necessary, the following numerical experi-
ment was conducted. First, a configuration was con-
structed in which the initial distortions ¢;(¢ =0) were ran-
domly chosen in the interval [ —2m,27], and this state
was allowed to evolve in time according to Eq. (1.2) with
parameter values F,=12 (F, is irrelevant here), U =4,
and Q =2m(55/34). Then, the same configuration was
allowed to relax in zero field for a time interval T; =7 be-
fore the force was applied. The system then has a chance
to conform to the impurity potential, which would
enhance the oscillations greatly if they were a result of de-
phasing only. These two velocity traces are compared to
the results using the F=0 ground-state and F =50
steady-state configuration as starting conditions in Fig. 5.
The high-field steady-state configuration exhibits much
smaller oscillations than any of the other cases, but the os-
cillations for the random configuration are about as large
as those for the metastable states.

IV. DISCUSSION

We have examined the response of an incommensurate
harmonic chain to voltage pulses. The response to small
pulses is well described by a perturbation expansion for
small deformations of the chain, and application of large
pulses from pinned configurations dramatically enhances
the current oscillations.

The fact that the ringing is much more pronounced
when the starting configuration is a metastable state
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below threshold than when it is a high-field steady state is
consistent with the suggestion that the transient oscilla-
tions can be viewed at a dephasing of the narrow-band
noise, which starts off with an induced coherence from
the pinning and then gradually becomes incoherent.’%
This point of view is compatible with the ideas presented
here, if only because both pictures arise from the same
model consisting of many elastically coupled degrees of
freedom in an external potential. However, the treatments
presented here and in Ref. 3 make it clear that theoretical-
ly this model leads to ringing even when the starting state
is totally dephased (e.g., a uniform state). The experimen-
tal observation of no ringing when the field is decreased
suddenly is consistent with the numerical result that start-
ing the CDW from a nearly uniform state involves a
much smaller perturbation than starting it from a meta-
stable configuration. Experimentally, it appears the only
way to induce the large distortions necessary to see size-
able oscillations is to start the CDW below threshold.
Sudden temperature changes could be used to change the
CDW steady-state configuration substantially, but it is
unlikely that they could be made quickly enough to see
the ringing response.

A major question is whether these results apply without
major modification to randomly pinned systems. A few
simulations using randomly pinned systems were conduct-
ed, and though some enhancement of the transients was
seen, the results appear to depend in nontrivial ways on
the system size, the realization of the impurity configura-
tion, and the starting configuration. At this stage it seems
that generalization of the conclusions to randomly pinned
systems is quite nontrivial, with the results appearing to
depend on details of the impurity potential. Further work
is clearly called for to elucidate this issue.

In principle, the work described here could be used to
determine whether coupling to the lattice is at all substan-
tial for sliding CDW systems. For instance, in TaS; the
CDW is very nearly commensurate [i.e., w, in Eq. (1.3) is
very nearly 1/4]. One would expect the nearly commen-
surate pinning potential to induce anomalously large tran-
sient oscillations at a frequency w=4v. This oscillation
would occur even in the presence of random impurities,
which would induce oscillations at @ =v and harmonics.
However, observation of this phenomenon must be con-
sidered extremely unlikely, since TaS; appears to lock in
at low temperatures, and one would also expect to observe
narrow-band noise at this frequency in the commensurate
phase. This narrow-band noise has never been observed
experimentally.

Since the deformable model used to describe the CDW
here is very similar to that used to describe the dynamics
of flux lattices in type-II superconductors,?’ some of the
considerations described here may also be relevant to that
experimental system.
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APPENDIX

This appendix discusses the approximations involved in
going from Eq. (1.1) to Eq. (1.2) (Ref. 12) and the differ-
ences between random pinning and incommensurate pin-
ning.

Going from (1.1) to (1.2) involves a discretization of the
spatial gradient (which one expects to be unimportant for
long-wavelength excitations) as well as changing from a
three-dimensional system to a one-dimensional one and a
modification of the impurity pinning term [the distortion
u (r) enters differently in the two equations]. The change
in dimensionality and the difference in the pinning terms
can affect the transient oscillations in a manner that can
be examined within perturbation theory.

We first discuss the difference in the pinning term. As-
sume that the impurity potential is rigid, and that the
CDW is deformable. In the frame of reference that is
comoving with the CDW, the charge density p(r) is just
cosQ-r, but the bit of the CDW at point r “sees” the im-
purity potential & at the actual (distorted) position, so the
impurity force U(r) is —d®(r+u(r))/dz. This argu-
ment yields Eq. (1.1).2!%2° Now compare with Eq. (1.2),
where the deformation u(r) appears inside the cosine
term.2! One can try to derive a three-dimensional analog
of (1.2) by considering a coordinate system that is fixed in
the frame of the impurities. The impurity potential is
®(r), but the charge density at point r is pgcos(Q-r'),
where r’ is determined by the condition r'+u (r’ )z=r. In
general, this is a complicated nonlinear equation for r'.
However, if the CDW is very stiff, so only very long-
wavelength excitations are important, then r’ is expected
to be very nearly r—u(r)z and the two equations are
equivalent.

Although the two equations have the differences out-
lined above, no unphysical artifacts are expected to result
from using Eq. (1.2), since it describes the real physical
system of a chain connected by springs of random length
with equal stiffness in a sinusoidal potential.

The use of a one-dimensional equation rather than a
threé-dimensional one has fairly dramatic consequences
for the perturbative results. The first concerns the validi-
ty of the perturbation theory. For Eq. (1.2), if one calcu-
lates ¢;(¢) to fourth order in powers of U, one finds the
result contains integrals of the form f d%/(Aq* +0?),
even when v is finite. These integrals diverge at small ¢
and =0 for d <4. Clearly, the divergence becomes sig-
nificantly stronger as d decreases. For Eq. (1.1) the diver-
gence is weaker; the relevant integral is d% /(q2+ Ag*),
which diverges for d <3. Therefore, strictly speaking, the
perturbation theory is merely a qualitative guide rather
than a quantitative calculation of the oscillations. Fish-
er?? has discussed the role of dimensionality in (1.2)
within perturbation theory.

Ignoring the subtleties of the perturbation theory’s con-
vergence, one can compare the perturbative predictions
for the two equations (1.1) and (1.2), allowing for varia-
tions in the dimensionality d. We will assume that the
impurity potential is Gaussian distributed, so that

d
—2117—‘ fd“qe“q"q""¢(q)®(q’)=d>38(q——q’) (A1)

holds. The voltage oscillations in response to a current
pulse are still determined by Eq. (2.1). Equation (1.1)
leads to a self-energy 2(q,®) of the form™'®

24
zl(k,w).—-li"—:%d—g— [ d%[G(k+q,(g,— Q. +)

—G(q,(g;—Q; )], (A2)
with G ~!(k,0)=iw+K (k)?, whereas Eq. (1.2) yields
3)k,0)=|U(Q)| 22m~¢ [ d%[G(k+q,0—0)

—G(q,—V)], (A3)

with G~ !(k,w)=iw+D (k). If long-wavelength distor-
tions dominate, the cosine term implicit in (A3) can be ex-
panded; the two expressions are identical up to rescaling
of v and K in (A3) except when Q,v=w, where
G k+q,(g,—Q,)v+w) goes like Kg*+q,v rather than
Kq?. The two expressions coincide except in a region of
phase space where Kg* <vg,, whose volume vanishes as
K — . The physical arguments given above lead one to
expect this. However, for finite K, the additional term in
(A1) has the effect of reducing the effectiveness of the
very long-wavelength modes. Since the decay rate of the
oscillations arising from scattering off potential com-
ponents with wave vector g increases as Kq?2, suppressing
the long-wavelength contributions inhibits ringing.

We will assume that the characteristic length scale of
deformation is much greater than the CDW wavelength.
The integral (A3) can be done explicitly and the time
dependence as t— oo can be obtained by scaling the re-
sulting form for the current response (2.3); for v along Q
one finds

| UQ)| %At~ %sin(vt +¢,) , d>2,

o(t)~ |U(Q) | 245t~ 2= Vsin(vt +¢,), d <2,

(A4)

where the 4; and ¢; are constants of order unity. The
voltage response to a current pulse resulting from the
self-energy (A2) is not always oscillatory; for small CDW
stiffness K, a smooth decay after an initial overshoot is
found, as discussed in Ref. 3 for current driving. A mea-
sure of the stiffness is the Lee-Rice length?
Lo~(K /®4)*”“~9. In NbSe; L, is much greater than
the inverse of the CDW wave vector Q !, so well-defined
oscillations are expected. The dependence on the dimen-
sionality d and the change of character when d =2 indi-
cates that 1-d models cannot be used to quantitatively fit
CDW’s with three-dimensional fluctuations. However,
1-d chains are good qualitative guides to CDW behavior.
We now examine how the incommensurate pinning re-
sults compare to those for the random models. We will
restrict ourselves to one dimension. The incommensurate
pinning model here involves scattering off a potential with
components only at Q and — Q. In the sense that low-
frequency components of the impurity components are
missing altogether, this model mimics the suppression of
the effects of the g—0 modes that occurs for the correct
equation of motion with random impurities that is in-
correct in Eq. (A3). Whether ringing occurs within per-
turbation theory depends on how the oscillation decay rate
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D (Q) compares to the oscillation frequency v.

The physical process giving rise to the transient oscilla-
tions is anomalous dissipation for modes whose frequency
corresponds to the “washboard” frequency wy,=Q-v for
(1.1) and wo=v for (1.2). This is true for both random
equations of motion as well as the incommensurate case.
Therefore, it is not unreasonable to hope that the non-
linear effects found for the incommensurate chain provide
a good guide to the behavior of a randomly pinned CDW.

The discrete incommensurate model, because the pin-
ning is so regular, does not seem to develop large polariza-

tions (“bubbles”) that are a hallmark of the randomly
pinned system.'>?*25 However, this difference does not
seem to effect the oscillations in any fundamental way,
because in a unipolar pulse sequence the polarization, once
it is built up, does not change much.'*?® The whole
CDW moves at basically the same velocity, so the
enhanced dissipation at the washboard frequency that
leads to the oscillations still operates. Therefore, one ex-
pects to see qualitatively similar phenomena, though the
perturbation theory is relevant only at extremely high
fields when the polarizations are small.
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