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We present a calculation of the dispersion relation of the intra-Landau-level and inter-Landau-level
collective modes of the two-dimensional Wigner crystal in a strong magnetic field. Our analysis is based
on the time-dependent Hartree-Fock approximation (TDHFA) for the density-density response function
and allows for an arbitrary large degree of anharmonicity. We derive the density-density response func-
tion from an equation-of-motion approach that uses identities valid in the strong-Geld limit. The
TDHFA response function is shown to depend only on the ground-state density as calculated in the
Hartree-Fock approximation. The intra-Landau-level collective excitation and the excitation near the
cyclotron frequency are shown to correspond, respectively, to the low- and high-energy branches of the
harmonic phonon spectrum. Additional collective-excitation branches occur near larger multiples of the
cyclotron frequency. In contrast with the Hartree-Fock approximation, the TDHFA excitation spec-
trum does not contain transitions between the Landau-level subbands created by the self-consistent
Hartree-Fock potential in the electron lattice.

I. INTRODUCTION

A gas of electrons will form a Wigner' crystal at
sufficiently low density and temperature when the energy
cost of localizing electrons around lattice sites is
outweighed by the decrease in the potential energy due to
the formation of the lattice. Wigner crystallization has
been observed in two-dimensional sheets of electrons
trapped on the surface of liquid helium where the elec-
tron gas is almost classical (A /m'ao&&k Tt,te /mao,
where ao is the lattice spacing and e is the dielectric con-
stant). However, at least in the absence of a magnetic
field, there has been no observation of such a phase in the
quantum regime, which usually applies for electrons in
doped bulk semiconductors or in two-dimensional
electron-gas (2DEG) systems fortned at semiconductor
inversion layers. The crystallization physics is qualita-
tively changed when a magnetic field is applied, especially
for a 2DEG. In a magnetic field, electrons execute circu-
lar cyclotron orbits for which the energy is quantized in
units proportional to the magnetic-field strength. In the
strong-magnetic-field limit, all electrons have the
minimum quantized kinetic energy, i.e., all are in the
lowest Landau level. The large quantized kinetic energy
allows the electrons to be localized to a length compara-
ble to their classical cyclotron orbit radius without any
further cost in kinetic energy. (The minimum kinetic en-

ergy is Ace, /2, where co, =eB/rn'c is the cyclotron fre-
quency. The corresponding cyclotron orbit radius is the
magnetic length I =&itic/eB, which decreases with in-
creasing magnetic field. ) Once I becomes small compared
to the typical distance between electrons, crystallization
will occur. ' In zero field the Wigner crystal can only
exist below some critical density. For any density, how-
ever, crystallization will occur for a sufficiently strong
magnetic field.

In this paper attention is restricted to the case where
all electrons are in the lowest Landau level and
intro, » e /ao so that Landau-level mixing due to
electron-electron interactions can be neglected. In this
limit, because of the Landau-level degeneracy, the
Coulomb interaction is the only essential term in the
Hamiltonian and direct perturbative treatments of the
physics are not possible. Wigner-crystal states with bro-
ken translational symmetry are in competition with the
incompressible Quid states responsible for the fractional
quantum Hall eff'ect, which are especially stable when
the filling factor v=2ttl n =nhc/eB is a fraction with an
odd denominator (n is the areal electron density). Obser-
vations of the Wigner crystal have been claimed in this
regime, however, and suggest that the crystal phase is
stable for filling factor v~ —,', except for v near 1/m for
m=5 and possibly larger odd integers. These observa-
tions are consistent with theoretical estimates of the
filling factor at which the transition to the crystallization
state is expected. Anomalies seen in sound propaga-
tion, ' which are not yet fully understood, might indi-
cates that the ground state is also crystalline for v near —,'.

The dispersion relations of the normal modes of the
classical two-dimensional Wigner crystal in a magnetic
field were evaluated by Bonsall and Maradudin. " The
corresponding quantum-mechanical calculation was done
by Fukuyama. ' In the strong-field limit they find that
the two phonon branches of the crystal are separated into
a low-frequency nearly transverse branch and a high-
frequency nearly longitudinal branch which occurs near
the cyclotron frequency and, in the long-wavelength lim-
it, corresponds to a classical magnetoplasmon. The
unusual k dispersion of the transverse phonon mode
can provide a clear signature of the crystalline state.
These calculations assume the usual harmonic approxi-
mation which requires that the displacement of a particle
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from its equilibrium position in the lattice is small. Be-
cause of the large zero-point motion of an electron in the
Wigner crystal (which is of the order of
I =&v/2vra0=0. 28a0 at v= —,'), the harmonic approxi-
mation is, a priorr, well justified only for very small filling
factors even at zero temperature. One may expect that
anharmonic effects due to this large zero-point motion, as
well as short-range correlations resulting from the prox-
imity of the particles during their relative motion, could
modify the dispersion relation of the collective modes.

In the 1960s a number of techniques' were developed
in order to deal with the lattice dynamics of systems for
which the harmonic approximation is invalidated by
zero-point motion. (The most conspicuous example of
these so-called quantum crystals was solid helium. ) The
successful approaches are equivalent to an effective har-
monic approximation in which the force constant is aver-
aged over the motion of the particles. In this paper we
derive the collective modes of the Wigner crystal in the
strong-field limit using a formulation in which each elec-
tron is allowed to move itinerantly through the crystal
rather than having its motion referred to a particular lat-
tice site. Expansions in displacements from lattice sites
do not appear at all. The collective modes are associated
with poles of the density-density response function which
we derive in the time-dependent Hartree-Fock approxi-
mation (TDHFA). We first solve for the ground-state
density (n(Cx)) (Cx is a reciprocal lattice vector) in the
Hartree-Fock approximation HFA and then show that
the density-density response function can be derived from
a relatively simple equation of motion which depends on
( (nG) ) only. The broken translational symmetry of the
crystalline ground state is thus easily introduced in the
calculation. The derivation of this equation of motion is
facilitated by identities valid in the strong-field limit. In
this limit the TDHFA response function (and thus the
dynamical properties of the crystal) depend on the
ground state density only. Our approach becomes exact
in the harmonic limit (v~O), but allows for arbitrarily
large anharmonicity at larger filling factors and is able to
account for itinerant behavior of the electrons without
any difhculty. We find that, for filling factor v~ —,', the
TDHFA phonons are only slightly different from those
calculated by the usual harmonic approximation. "'

For filling factor —,
' & v~0. 45, however, exchange effects

become important and very much modify the dispersion
relation until the crystal starts to soften at v=0. 45. The
TDHFA magnetoplasmon branch is also close to the re-
sults obtained in the harmonic approximation, at least
over the range of filling factors where the ground state is
expected to be crystalline. However, we find that addi-
tional collective modes occur near multiples of the cyclo-
tron frequency. These modes are absent in the harmonic
approximation and are analogous to excitations which
occur in the fluid state. '

Our approach is formally close to the random-phase-
approximation (RPA) phonon theory for quantum crys-
tals developed by Brenig' and Fredkin and %'erthamer
and reviewed in Ref. 17. This approach is based on a
mean-field picture of the lattice ground state in which
each particle moves in a self-consistent potential which

attracts the particles to the lattice sites. The particles are
assumed to be bound to the lattice sites so that, in the
harmonic limit, an Einstein oscillator exists at each site.
The phonon excitations of the lattice are identified with
poles in the response of the displacernent of each particle
from its lattice site to an external potential. Each
responding particle sees local fields from its interaction
with the responding particles on other sites, and this
leads to an effective harmonic problem with force con-
stants determined by an average over the particle motion.
Our approach improves on this approximation in several
ways which are important for the present problem. Most
importantly the particles are not assumed to be bound to
a particular lattice site, but allowed to be itinerant. For
itinerant particles it is essential to account for statistics
and we are able to self-consistently include exchange in
both the ground state and in the local fields. Once the
particles are allowed to move throughout the crystal, it is
no longer possible to identify a discrete degree of freedom
such as the displacement of a particular particle from a
particular lattice site. For this reason we formulate our
theory in terms of the density-density response function,
which is directly related to experiment, rather than the
displacement-displacement response function, which ap-
pears naturally in the RPA-phonon theory.

This paper is organized in the following way. In Sec.
II we derive a general expression for the Hartree-Fock
Hamiltonian of the 2DEG in a magnetic field. We use
the strong-field limit of this expression in Sec. III to
derive an expression for the ground-state density ( n (G) )
of the Wigner crystal using an equation-of-motion ap-
proach. We then derive, in Sec. IV, the strong-
magnetic-field density-density response function in the
TDHFA. We present and discuss our numerical results
in Sec. V. Finally, we summarize our results and make
some concluding remarks in Sec. VI. A brief account of
this work has appeared previously. ' We remark that
another calculation of the dispersion relation of the col-
lective modes of the two-dimensional Wigner crystal us-
ing a different formalism (the self-consistent phonon for-
malism with the inclusion of the cubic anharmonic
correction) has been done very recently by Esfarjani and
Chui. ' Some of their results are different from those ob-
tained with our approach.

II. HARTREK-FOCK HAMILTONIAN

In this section we derive the Hartree-Fock Hamiltoni-
an of the two-dimensional Wigner crystal including an
arbitrary number of Landau levels, following the ap-
proach of Ref. 20. This allows us to define our notation
and to introduce the formalism that we will use in the
next sections to obtain the equations of motion of the
one- and two-particle (density-density response function)
Green's functions, from which we extract respectively the
ground-state density and collective modes.

Working in the Landau gauge, we write, for the Hamil-
tonian of the two-dimensional electron gas subjected to a
transverse magnetic field B= —Baz
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1H= g s„ctxc„z+ g g V(q)(n&, X& exp(iq r)~n4, X4)
n4 X4

X (nz Xz lexp( Eq r)I&3»3 ~c, ,~,~,x ~, ,x,&,x
where

(r~n, X)= exp(iXy/I )P„(x —X), n =0, 1,2, . . .1

L
(2)

are the eigenstates of the kinetic energy operator, P„(x) is a one-dimensional harmonic-oscillator eigenstate with oscilla-
tory frequency co, =eBo/m*c, I =(fic le80)'~ is the Larmor radius, and, for a finite system, the allowed values of the
quantum number X are separated by 2ml /L . The energy eigenvalues of the Landau levels n are given by
E„=fico,(n + —,

'
) and are independent of X. The degeneracy of each Landau level is given by g =S/2+i, where S is the

area of the two-dimensional electron gas. Finally V(q)=2~e /q is the two-dimensional Fourier transform of the
Coulomb potential. Note that we have assumed that the electron spin will be completely aligned with the external mag-
netic field in the strong-Geld limit of interest and have dropped the spin degree of freedom.

The matrix elements (n, X~exp(iq r)~n', X') in Eq. (1) are given by

(n', X'~e xp(iq. r)~n, X) =exp[i ,'q (X—'+X)]F„„(q)5XX+X',X+q 1

F„„(q)= n'!
( —q +iq„)(

exp
—ql „, ql

4 " 2

for n ~ n', where L„(x) is the generalized Laguerre polynomial. Note that F„„(q)= [F„„(—q)]*.
In the Landau eigenstates basis, the Fourier-transformed density operator n(q) = J dr exp( —iq. r)n (r) takes the form

n (q) =g g p„„(q)F„„(—q),
n, n'

where we have introduced the operator

=1p„„(q)=—+exp( iq„X ,'iq q~l
—)c„xc-, —

g X
n, X+q I

which satisfies

Xgp„„(q=0)=—,
n

where N is the number operator. v= (N ) /g is the Landau-level filling factor of the electron gas. We shall work with
the operator p instead of n in most of this paper. Equation (5) can be used to relate the equations derived below to
equations for the density operator n.

Inverting Eq. (7), we get the relation

c„~c„~= g p„„(p)exp[—,'ip„(X+X')]5
P

(8)

In the crystal phase the average density (n( )q) [and so (p(q))] is nonzero only at q=G. where G is a reciprocal-
lattice vector of the two-dimensional lattice. It then follows from Eq. (8) that

(c„xc„.z ) =g(p„„(G))exp[ ,'iG (X+X—')]5
6 1 y

Making the usual Hartree-Fock pairing of the second-quantized operators in the Hamiltonian of Eq. (1) and using Eq.
(9), we get the Hartree-Fock approximation for H,

HHF=g QE„p„„(G=O)+gg g U(n, n', G)p„„'(G),
G n, n'

where we have defined an eff'ective potential U(n, n '; G) by

2

U(n, n', G)= g [H(n, , nz, n, n', G) —X(n&, n', n, nz, G)](p„„(—6)),
nl, n2

(10)
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w&th the Hartree (H) and Fock (F) terms defined by

H (n „n2,n3, n4, G) = p'(G)F„(G)F ( —G)1

2me2l

IX(n„n2, n3, n4,'G)=
2 g V(q)F„„(q)F„„(—q) exp( —iqXGl ) .

e S 1' 2 3' 4
q

(12a)

(12b)

(We note that our definitions for these functions are
slightly different from those of Ref. 20. Throughout this
paper we use the two-dimensional cross product as a
short form for kXq=k q»

—k»q .)

III. GROUND-STATE DENSITY
IN THE STRONG-FIELD LIMIT

We now derive the average density (p(G)) in the
strong-field limit of the HFA using an equation-of-motion
approach. As will be shown in Sec. IV (p(G)) is the
only quantity needed to calculate the collective excita-
tions of the Wig ner crystal in the time-dependent
Hartree-Fock approximation. In the strong-field limit
Ace, ))e /l (v ( 1), the HF Hamiltonian can be simplified
by assuming that only the first Landau level (n =0) is
partially occupied, i.e., that Landau-leveling mixing may
be neglected. The Hilbert space may then be restricted to
the lowest Landau level only. Magnetic fields where this
approximation is well justified ' ' are readily reached ex-
perirnentally. Most of the results that we describe in this
section have been obtained by early workers on the
strong-magnetic-field Wigner crystal using other ap-
proaches which prove to be far more cumbersome. We
show, for completeness, how these results may be ob-
tained using our equation-of-motion approach, establish-
ing in this way some results required for the application
of the equation-of-motion approach to the density-density
response function.

Within the HFA the homogeneous electron gas be-
comes unstable with respect to the formation of a
charge-density-wave (CDW) state below a temperature
T„which is typically much higher than the melting tem-
perature of the classical Wigner crystal. ' ' It is usual-
ly assumed that strong short-range correlations exist
below this temperature, although long-range order is not
expected to survive the inclusion of correlations absent in
the HFA, at least until much lower temperatures are
reached. Many possible periodicities for the CDW are
possible. At T=0 K, however, the configuration of
lowest energy is assumed, for v & —,', by a CDW with hex-
agonal symmetry and having one electron per unit
cell. ' (For v very close to v= —,', the square lattice is
slightly lower in energy. ) We refer to this particular
CDW state as the triangular Wigner-crystal state since it
approaches the classical Wigner crystal, where electrons
are localized on the sites of a triangular lattice, for v « 1.
(For a classical two-dimensional array of point charges,
the configuration of lowest Coulomb energy is the tri-
angular lattice. ") The density in the triangular Wigner-
crystal phase is given by n =1/eao, where e=/3/2. Be-
cause of the electron-hole symmetry of the Hamiltonian,

G„„.(X,X', i.) = —( Tc„x(r)c„x(0) )

and its Fourier transform G„„.(G, i.) by

G„„.(G, i.)

=g ' g G„„(X,X', i.)
X,X'

(13)

Xexp[ ,'i G„(X+—X—')]5, ,»7 y

so that (p„„(G)) is given by

(14)

the properties of the system for —,
' & v & 1 may be obtained

from that of the system with filling factor 1 —v by replac-
ing electrons by holes. Thus only the case 0 & v & —,

' needs
to be considered.

The problem of finding the eigenstates and eigenener-
gies of electrons in the crystal phase of the HFA is com-
plicated because these electrons feel both the external
magnetic field and self-consistent periodic potential that
they themselves create. It is known, however, from the
study of noninteracting electrons in an external periodic
potential ' that, in this case, the Landau levels are split
into subbands. Specifically, for the Wigner-crystal case,
when the filling factor is rational, i.e., for
p/q=BSO/No= I/v, where p and q have no factors in
common and So =n ' is the unit-cell area of the crystal,
the Landau level splits into p nonoverlapping subbands.
For these rational filling factors, it is possible to block di-
agonalize the Hartree-Fock Hamiltonian into blocks of
finite dimension d, where d is proportional to the number
of subbands at the filling factor considered. The diago-
nalization of these blocks is then performed numerically.
The single-electron energies are given by E„(k)
=fico, /2+a„(k), n =1,2, . . . ,p, where k is a vector re-
stricted to the Brillouin zone of the crystal considered.
The HFA single-electron spectra has been accurately
evaluated by Yoshioka and Lee, ' who find that the ener-
gy width of the occupied subband decreases sharply as
the filling factor decreases toward zero. In the harmonic
limit (v~0), the electrons are correspondingly increas-
ingly localized around each lattice site and we expect the
harmonic approximation to be accurate. The HFA
charge density can be evaluated by summing over occu-
pied states. (The eFects of the Landau-level mixing as
well as corrections to the HFA for the crystalline state
are considered in Refs. 20, 21, and 26.)

If we are only interested in calculating the quantity
(p(G) ), a simpler numerical approach can be employed.
To show this we begin by defining, using the finite-
temperature Matsubara formalism, ' the single-particle
Green's function
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&p„„(G)&=6„.„(G,r=O ) .

Using

( )=[H —pN( )],a
a~

(15)

(16)

where Ip(x) is the modified Bessel function of the first the
kind (the factor 1 —5o p is due to the neutralizing positive
background). Wp(G) is plotted in Fig. 1.

Using the eigenvalues and eigenvectors of /1(a, a')
defined by

—g —U(n, n "G' —6 )

i

X exp[ —,'iCx X Cx'l']6„„(a',co„)=5„„5op,

(17)

where co„ is a fermionic Matsubara frequency. We now
invoke approximations which are justified in the strong-
field limit. First, we may assume that only the lowest
Landau level is partially occupied, which allows us to
take & p„„(Cx)&NO only if n and n

' are both zero. Equa-
tion (7) then becomes

& p(G=O) &—:&pp p(a=o) & =v,
and the eQ'ective potential reduces to

2

U (n, n ', Cx) = [H(0, 0, n, n ', Cx)

(18)

—X(O, n', n, O;G)]&p(G) & . (19)

Second, if the Landau levels are well separated, the large
Landau-level separations render the parts of the e8'ective
potential which mix Landau levels ineftective. We may
thus take

U(n, n', G) = U(n, n; G)5„„—= 8'„(G)& p(Cx) &, (20)

where p is the chemical potential of the electrons which
we measure with respect to the kinetic energy of the first
Landau level, we obtain

[ ico„—( neo, —p/A') ]6„„(Cx,co„)

g & (G, G') V(Cx', j)= V(a,j )co, , (24)

and performing a Matsubara-frequency sum, we can ex-
press the ground-state density as

&p(a) &
= g V(G, j)[V(G=O,j)]*f(iiico —p),

J
(25)

g V(Cx=O, j)[V(G=Oj )]'e(p fico, )—
J

=&p(a=o)&=v. (26)

This sum rule was derived previously, although in a more
complicated way, in Ref. 21. Finally, the ground-state
energy per particle is now simply given by

%co'+ y ~,(a)&p(a) &'
2 2V G

&~c 1

2 2v l
+ g [Hp(6)(1 —5Gp) —Xp(6)]

x &p(c) &'. (27)

Since the effective interaction Wp(a) is negative for
Gl ~1, we see that the HFA will possess a number of
CDW solutions. Equations (18), (24), and (25) and at

where f (x ) = [exp(I3x )
—1] is the Fermi distribution

function with 13=1/k
GATI. At T=0 K we can easily

derive, using this last equation, the sum rule

g&p(G) &'= g V(6=0,j)[V(G=O,j)]*f(Iri i
—Itc)]'

G J

which defines the effective interaction W„(a).
these approximations defining our lowest Landau-level
approximation (LLLA), the equation of motion for
6p p(G co ) becomes

(ico„+IM /i)i) 6p p(G, co„)

0.5 I I I I I I I I I

QA(Cx G )6pp(a co )=5G p (21)

where we have defined the Hermitian matrix

~(a,a )=—„w,(a —a')&p(a —G') &

1

X exp [—,
' i Cx X Cx'l ) .

The effective interaction Wp(a) has the explicit form

(22)

0.0

—0.5

Wp(a) = e
—6 I /2(1

1/2
'7l —G I /4I (62l2/4)

1

I I I I I I I I

2
x=q)/uZ

I I I I I I

[Hp(6)(1 5G p) Xp(6) ] (23)

FIR. 1. EC'ective interactions 8'„(q) and 8'„(q) for n =0, 1,2
as defined in Eqs. (23), (51), and (52). [Note that
Wp(q) = Wp(q). ]
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T =0 K, the sum rule of Eq. (26) can be solved numeri-
cally to find a self-consistent solution for the density and
chemical potential. To enforce a particular solution (we
consider in this paper the case of a triangular Wigner
crystal only), an external potential with the desired sym-
metry is added to the first iteration to the above set of
equations. Of course, because the number of reciprocal-
lattice vectors (and so the dimension of the matrix A) in-
creases very rapidly with G, the approach presented here
is useful only if the eff'ective potential U(0, 0;Cx) de-
creases rapidly with G. We have found that for v not too
small (typically —,', (v (—,

' ), a rapidly convergent solution
can be found by keeping a relatively small number of
shells of reciprocal-lattice vectors (a shell contains all
vectors of same modulus). In the above range for v, the
sum rule of Eq. (26) (T =0 K) was satisfied to more than
six figures by keeping 16 shells of reciprocal-lattice vec-
tors. Our results for the ground-state density and energy
are in agreement with previous calculations using the
block-diagonalization technique outlined at the beginning
of this section. ' It is, however, not possible to obtain
the single-particle energies E„(k) with our approach.
(We note that as the size of the matrix 3 is increased, the
eigenvalues cu will fill in the bands of the single-particle
energy spectrum, as expected. )

The ground-state density is well approximated, in the
small-filling-factor limit, by the Gaussian form

(p( G) ) G
=v exp( —G'I'/4), (28)

which represents a Wigner crystal with a density pattern
given by

(n(r))G= g exp[ —(r —R„) /2l ] .1

2ml R
(29)

The wave function

'Aco

EG= ' + g Ho(G)(p(g))G—
2 I 2v ~~p

(30)

where the first term in the large parentheses is simply the
static Coulomb energy of a lattice with the density pat-
tern of Eq. (29). For a lattice of point electrons (l «ao),
Eq. (30) simplifies to"

~P(r)~ =(1/2vrl )exp[(r —R„) /21 ]

is appropriate for an harmonic oscillator centered at R„
and having the zero-point energy E, =%co, /2. If we
think of Eq. (29) as representing a set of N localized and
independent oscillators, then the ground-state energy per
particle of such a system would be given by

IV. COLLECTIVE MODES IN THE TDHFA

Bonsall and Maradudin" have calculated the collective
modes of the harmonic Wigner crystal for several
different lattice types in two dimensions. For an electron
lattice with a density pattern given by

n(r)= g o(r —R„),
R„

(32)

which is implicitly included in the first term and must
thus be removed. This self-interaction energy is also in-
cluded in the first term in the bracket of Eq. (27) (the
Hartree term), and in fact it can be seen from the numeri-
cal results that most of the Fock term in the HF ground-
state energy serves to cancel this self-interaction energy,
especially for v((1. The net "exchange" contribution to
the EH„ is thus quite small except for v near —,', where the
overlap between wave functions of neighboring sites be-
comes significant (at v= —,', l/ao =0.28).

In the LLLA the kinetic energy of the noninteracting
electrons is frozen. The static correlations included in
the HFA, however, give rise to an effective periodic po-
tential at each lattice site in which the previously un-
correlated electrons now move. In the course of its large
zero-point motion in this effective potential, the electron
sees a restoring force that modifies its motion and
changes its dynamic energy. In the ground state of the
crystal, the electron has now a new zero-point energy and
a modified wave functi. on. The density pattern will thus
also be modified. In the small-filling-factor limit, the
HFA can be viewed as describing a set of uncorrelated
oscillators oscillating with a renormalized frequency. As
the filling factor increases, however, the electrons become
more delocalized, the bandwidth of the occupied state in-
creases, the electrons become more itinerant, and this
picture is no longer applicable.

In Ref. 21 higher-order corrections to the HFA as well
as Landau-level mixing are considered. These correc-
tions modify the ground-state energy only slightly so that
the HFA is indeed a very good approximation to the
ground-state energy of the crystal state. It is quite clear,
however, from the large gap between occupied and unoc-
cupied states in the single-particle energy spectrum that
the HFA does not includes the correlations which give
rise to the expected phononlike collective modes in the
electron crystal. In the next section we describe how
these collective excitations can be obtained starting from
the HFA for the ground state. The above set of equa-
tions for (p(G) ) can also be solved at finite temperature
without further diSculty.

%co eE = —0.782 133'/vH l

the dynamical matrix is defined by
(31)

D p= ge ' ' D p(R),I (33)
The energy EH represents a lower bound for the ground-
state energy. The second term in the bracket of Eq. (30)
is the self-interaction energy of an individual electron, where
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$2 2 0.(r —R, —u()a(r' —R,' —u, ).,(,—,)=— '
y Jd jd '

u&~ ujp 2 r —r'

so that

e2
y [(k+G) (k+G)pV(k+G)~cr(k+G)~ —G GpV(G)~cT(G)~ ] .

leap

(34)

(35)

[As v~0, Eq. (3S) must be cast into a more rapidly convergent form. "]
In the absence of a magnetic field, one finds, in the long-wavelength limit, a longitudinal normal mode with frequency

co&-&k and a transverse normal mode with frequency co, -k corresponding to the plasmon and (transverse) phonon
excitations of the crystal. The nonanalytic dispersion of the plasmon mode is due to the long-range nature of the
Coulomb force and survives in the liquid phase, while the transverse phonon mode is specific to the crystalline phase.
In the presence of a magnetic field, these two modes are coupled by the Lorentz force on the oscillating electrons. At
long wavelength the coupling gives rise to a low-frequency m -k' magnetophonon mode and to a high-frequency
magnetoplasmon mode with co+(k =0)=co, . In the strong-field limit the dispersion relation of these modes is given, us-

ing the identities co, +co& =tr(D) and coIco, =det(D), "by
2

co (k) = +det[D(k) ] (36a)

and

COp

co+(k) =co, + tr[D(k)],2' (36b)

where D(k)=coo D(k) is a dimensionless quantity and coo=ge /mao sets the scale of the dynamical matrix. Since
coo/co, =(e /A'/)(v&3/m )' is independent of the electron mass, we see that the magnetophonon mode corresponds, in
the quantum picture, to an excitation of the Wigner crystal in which the quantized kinetic energy is not changed (i.e., to
an intra-Landau-level excitation), while the magnetoplasmon corresponds to an excitation in which an electron is pro-
moted to a higher Landau level (i.e., to an inter-Landau-level excitation).

In order to determine the spectrum of density fluctuations in the quantum crystal, we consider the density-density
response function defined by

„(k+G,k+ G', r) = —g ( Tp„„(k+G, r)p„„(—k —G', 0) ), (37)

where p„„=p„„—(p„„)and k is a vector restricted to the first Brillouin zone. (Note that we again use the
1' 2 1~ 2 1' 2

operator p instead of the true density operator n )The st. rong-field limit of the classical results suggests that we can
look for the corresponding quantum modes by calculating the poles of the functions yp p p p for the magnetophonon and

pp ] ] p for the magnetoplasmon.
As we mentioned in the Introduction, the formalism that we use to derive the collective modes of the crystal is simi-

lar to the RPA-phonon technique reviewed in Ref. 17. However, as we saw in the preceding section, to obtain the
CDW states it is necessary to include the exchange interaction in the mean-field Hamiltonian. To be consistent this ex-
change interaction must also be included in the derivation of response function. The resulting set of diagrams for this
function includes ladder as well as bubble diagrams and is called the generalized random-phase approximation (GRPA)
or time-dependent Hartree-Pock approximation. Ours are thus GRPA phonons instead of RPA phonons. Moreover,
in the literature on quantum crystals, the particles are not allowed to move itinerantly and each particle is associated
with a particular lattice site from which it is displaced. It is then natural to pursue the analogy with the harmonic ap-
proximation by defining the phonon frequency in terms of the positions of poles of a displacement-displacement
response function. In this paper the displacement operator is not a useful quantity since its spectrum is unbounded. All
collective modes are associated with poles of the density-density response function as is commonly the case in Auids. As
a result, the quantities we calculate are much more directly related to experimental probes of the crystal.

It is easy to derive a general equation of motion for g by making use of the commutation relation for the operators
p„„,which is

(38)

and of the HF Hamiltonian of Eq. (10). We obtain
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[ i Q„+( E„—e„)/1)2]y„„„„(k+Cx, k+ G'; Q„)
—i(1/2)(k+G)X(k+G')1 ( (G Gi) ) g i(1/2)(k+G)X(k+G')l ( (G Gi) )n2, n3 Pn, , n4 n, , n4e

1 g g [ U(n n Gii G) —l(l/2)(k+G)x(k+G")l ]yo
G" n

+ g g[U(n n G"—G)e'(1/2)(k+G)x(k+G")l ]~0 (k+G» k+GI Q )
3& 4G" n

(39)

where Q„ is a boson frequency. Equation (39) corresponds to calculating y in the HFA. (At this point since we have
not yet made the LLLA. ) We denote the HF result by y . This function will have poles at single-particle transitions be-
tween the different subbands described in Sec. III. To get the collective modes we calculate g in the time-dependent
Hartree-Fock approximation. The TDHFA follows directly from a functional differentiation of the HFA (Ref. 34)
equation of motion and is thus the natural approximation to take here since we have already calculated the ground state
in the HFA. (The RPA comes from a functional differentiation of the Hartree approximation and corresponds to tak-
ing the irreducible part of g, i.e., y, as given by single bubble diagram only instead of by the summation of ladder dia-
grams as in the TDHFA. The RPA phonons of Fredkin and Werthamer' are obtained in this way. ) In the TDHFA
the electrons respond to the changed Hartree and exchange local fields as well as to the external potential. Thus, in the
harmonic limit, it is clear that, as an electron on one site is displaced from its lattice site, it will be subjected to a poten-
tial from the displacements of electrons on other sites so that the physics of the lattice dynamics will be captured.

The TDHFA is given by the set of equations

„(p+G,p+Cx', Q„)=f„„„„(p+G,p+G', Q„)
2

+ g f„„„„(p+Cx,p+G", Q„)H(n~, n6, n7, n();p+G")
Gll

Xy„„„„(p+G",p+G', Q„) (40)

„(p+G, p+ G'; Q„)=y„„„„(p+G, p+ G', Q„)
2

„(p+Cx,p+G";Q„)X(n7,n6, n5, ns, p+G")
G lt

Xg„„„„(p+G",p+ G', Q„) (41)

(where summation over repeated indices is implied). Note that the structure of these two equations with respect to mo-
menta is very similar; i.e., the bubble and ladder diagrams sum in just the same way in the presence of a magnetic field.
If we were to make the approximation of neglecting all Landau levels but n =0, we would write, for the full response
function,

y(p+ G, p+G', Q„)=y (p+ G, p+ G', Q„)
2

+ gy (p+ G, p+ G",Q„)[Ho(p+ G" ) —Xo(p+ G" ) ]y(p+ G",p+ G', Q„),
AI

(42)

which is just a RPA with an effective interaction given by Ho —Xo.
We shall now go to the strong-field limit and specialize to the case of v&1, making the LLLA described in

Sec. III. It is easy to see, from Eq. (39), that the only nonzero HF response functions in this limit
are given by yo „„0(k+G, k+ G', Q„) and g„o o „(k+G, k+ Cx", Q„). But because y„„„„(k,k', Q„)

„(—k', —k; —Q„), we need only calculate go „„0(k+Cxk+G, ;Q )'. „
Defining yo „„0(k+G,k+G', Q„)=+'"G,(k; Q„) and the matrices

g (n) (k) I/ir (G GI )( (G Gi) )
—i(1 2)(/k +) G(kx+)GI=1

a, o —
&

n P — e 7

(k) (p(G Gi) )e
—i(1/2)(k+G)x(k+G')l

G, G' (44)

CG G (k) =——Wo(G —G')sin[ —,'(k+Cx) X(k+G')l ](p(Cx —G') ), (45)

DG «(k) = —2i sin[ —,'(k+G) X(k+Cx')l ](p(Cx —Cx') ),
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these response functions obey the equations of motion (in an obvious matrix form)

[(iQ„n—co, )I—[ A'"'(k)]*+ A (k) ]X '"'(k;Q„)=B(k), n&0

[iQ„I—C(k)]X ' '(k;Q„)=D(k), n =0
(47a)

(47b)

where I is the unit matrix. Note that in the strong-magnetic-field limit the HF response functions for different values of
n are completely decoupled from one another. This decoupling persists in the full response function X given by Eq. (40).

Defining the matrix

WG'G(k)=5G G W„(k+G),
where

2

W„(k)= [H(n, O, O, n;k) —X(0,0, n, n;k)],

(48)

(49)

we have finally, for the response functions in the TDHFA,

I(iQ„nco, )
——[A'"'(k)]'+A (k) ——B(k)W'"'(k) X'"'(k;Q„)=B(k), nAO

1
(50a)

I(i Q„)—C(k) ——D(k) Wo(k) X' '(k; Q„)=D (k), n =0 .
1

(50b)

(51)e " L„(x )(1—5 o)—
2x

The interaction W„(k) that enters into the matrices A and C comes from the self-energy (Hartree and Fock terms) of an
electron in level n due to the electrons in the lowest Landau level. The interaction W„(k) comes from the vertex correc-
tions that take into account the direct and exchange interactions between the excited electron in level n and the hole left
behind in level n =0. These interactions have the explicit forms (x =kl /V2)

1/2

W„(x)= e 1 W —x /2e " Y(x)
l n! 2

and

2

W„(x)= —x 2n —1e "x" '(1 —5 )—x, o 2

—x /2 y ( 1)m
m

Y (x)
mt

(52)

where (" ) =n!l(n —m )!m!,L„(x) is the Laguerre polynomial, and we have defined the function

Y„(x)= d8e" "' ' H „(xsin(!9)),( —1)" ~n
(53)

where Hz„(x) is the Hermite polynomial. These potentials are plotted in Fig. 1. [Note that Wo(x)= Wo(x). Also,
W„(x =0) is finite since the Hartree contribution vanishes at x =0 because of the uniform positive background. ]

All response functions are thus obtained by an equation of the form [(iQ„nco, )I —M]X=N, whe—re M and N are
matrices which depends only on the ground-state density (p(G) ) evaluated in the HFA. (We remark that the response
function X„oo „(k+G,k+ G', iQ„) obeys the equation of motion [(iQ„nco, )I——M ]*X„o0 „=N' so that
X„oo„(iQ„)=[go„„o(iQ„)]*).The retarded response functions are obtained, as usual, by making the analytic con-
tinuation i Q„~m+i 5.

It will be useful for the numerical analysis to write X in the form X= U[(co+i5 nco, )I P] 'U —'N, —where Uand P,
are respectively, the matrices of the eigenvectors [ UG;(k) ] and eigenvalues [co;(k) ] of M defined by MU = UP. Using
Eq. (5) we have for the density-density response functions (defined with the "true" density operator n, not p the result

QG„FO„(—k —G)UG;(k)[U '(k)];G-NG G (k)F„O(k+G')

Z,'G G. (k)
co+i5 [nco, +co—;(k)]

(54)

where Z G G. (k) is the weight of the pole at co;(k) in 6&'z.(k, co). This is the form of our result used for the numerical
calculations discussed in the next section.

Because of our LLLA, 6G'G (k, co), for .nAO, have poles at the positive frequencies given by co=neo, +co;(k) only.
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The corresponding poles at co = —neo, —co,*(k) are to be found in y„o o „,which, in terms of the "true" density operator
and according to the remark made above, is simply given by [B&'G(k, —co)]*. The full density-density retarded
response function is thus, in our LLLA, given by

BG,(k, co) =Bo''o, (k, co)+ g I
B'"'o.(k, co)+ [0'"'o (k, —co)]*J, (55)

and B&'&.(k, co) has, of course, the same structure as the
expression inside the curly brackets.

In concluding this section, we remark that in the liquid
phase, where (p(Gr)) =v6& o, Eqs. (50) can be trivially
solved and give

(56)

where the dispersion relation of the collective mode cor-
responding to the 0—+n excitation is given by

co„(q)=n~, +—[ W„(0)—Wo(0)+ JY„(q)]

for n )0. This dispersion relation is shifted by a self-
energy correction [W„(0)—8 o(0)]=—,'Vrr/2 (n =1) or
—', &vr/2 (n =2) from the curve W„(x) represented in Fig.
1. In this limit our results for the excitation spectrum
reduce to those obtained earlier. The poles of the ma-
trix Bz'G.(k, co) are simply obtained by folding back the
dispersion relation in the first Brillouin zone, i.e.,

co;(k)=co„(k+Cx;) . (58)

V. NUMERICAL RESULTS

Equations (47), (50), and (54) allow us to obtain the
response functions 6 '"' and 6'"' and the dispersion rela-
tion of the collective modes by numerical matrix inver-
sion or diagonalization of a single matrix. In identifying
the excitation spectrum from the response function, it is
sufficient to examine the imaginary part of the diagonal
matrix element BG' o G. o. (All matrix elements share
the same poles, but the poles are weighted differently in
difFerent matrix elements. ) As in the calculation of the
ground-state density, we have found that accurately con-
vergent results are obtained by keeping 16 shells of
reciprocal-lattice vectors (i.e., 127 vectors). The above
formalism is completely general and thus is valid for
finite temperatures. The temperature dependence ap-
pears entirely through the function (p(G, T)). In this
paper we discuss only zero-temperature results.

Figure 2(a) shows the imaginary part of the HF
response function 6 ' ' at filling factor v=0. 25 and for
two different values of the vector k in the irreducible Bril-
louin zone of the triangular lattice (see inset). The HF
response function represents the response function of a
system of uncorrelated electrons in the presence of a
periodic potential as described in Sec. III and conse-
quently the excitation spectrum consists of bands of
particle-hole transition energies between the lower (filled)
subbands and higher (unfilled) subbands. At v=0. 25 the
Landau level is split into four subbands, of which one is

fully occupied so that transitions occur between the occu-
pied (lowest) subband and three higher-energy subbands.
For any truncation of the matrices in the reciproca1-
lattice vector, the approximate response function has a
finite number of simple poles; these poles merge into
branch cuts as more reciprocal-lattice vectors are includ-
ed. (As is clear from the logarithmic plots, the imaginary
part is not exactly zero outside the single-particle-
transition bands since we include only a finite number of
reciprocal-lattice vectors. ) We evaluate the response
function with the frequency shifted from the rea1 axis by
an amount 6 1arge enough to avoid resolving the indivi-
dual poles. Only two peaks are visible in Fig. 2(a), be-
cause the highest two subbands are separated in energy
by an amount comparable to the width of the occupied
subband and partly because of the finite resolution with
the value of 5 chosen for the size of the matrix used. The
imaginary part of the functions 6 "' and 6 ', corre-
sponding to transitions to higher Landau levels, are
shown in Figs. 2(b) and 2(c). In these figures three princi-
pal peaks are seen because the top two subbands of the
higher Landau levels are also separated by a very sma11

gap. (In calculating the response functions for n )0, we
measure the excitation energy with respect to n Ace, .) The
excitations energies are shifted upward from nkco, be-
cause the exchange self-energies are stronger for n =0
when the n =0 Landau level is occupied. Although the
position of the bands, for a given n, has almost no k
dependence, there is a sharp increase in the intensity of
the peaks as k increases in the irreducible Brillouin zone.

In Fig. 3(a) we show the imaginary part of the TDHFA
response function 6' ' at filling factor v=0. 25 and for
the same two values of k in the irreducible Brillouin zone
as in Fig. 2. The strong peaks with the large k depen-
dence are the magnetophonons and have a typical energy
of 0.05e /I; this energy scale is comparable with the ener-

gy scale of the intra-Landau-level gap associated with the
incompressible fractional-quantum-Hall states at nearby
filling factors. Shown in the inset is the imaginary part of
the function in the frequency range of the single-particle
excitations [for point numbered 1 in Fig. 2(a)]. The
TDHFA response function now shows absolutely no sign
of these excitations. The correlations introduced by the
TDHFA are sufficient to completely remove the
independent-oscillator character of the electrons in the
HFA. Figures 3(b) and 3(c) show the imaginary part of
the response function for n =1 and 2. For n =1 the
strong peaks in these figures correspond to the rnagneto-
plasmon excitation of the harmonic lattice. For n =2
and similarly for n )2, the collective modes are the crys-
tal analogs of the Berstein modes' which occur in the
electron-Quid state. These are purely quantum excita-
tions with no classical analog. Comparing Figs. 3(a), 3(b),
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nctions 8 '"', at filling factor v=0. 25, evaluated at tw o different k values in the irre-FIG. 2. Imaginary part of the HF response functions, a
r lattice as shown in the inset. The pointsd ible Brillouin zone of the triangular a ice asuci

The curves are for (a n =, n =The c ) =0 (b) =1 and (c) n =2. In (b) and (c),(1)=( —,', 0) and (2) =(=(1/+3, —') (All vectors are in 2~/ao units. ) The c
Ace is measured with respect to Ace, and 2Aco„respectively.

and 3(c), we see an indication that, as k goes to zero, the
weights in the magnetophonon and Bernstein modes e-
come much smaller than the weight in the magneto-
plasmon mode. This result is in agreement with Kohn's
theorem which states that in the absence of an externa
potential and at long wavelength the response is dominat-
ed by an excitation in which the center-of-mass kinetic
energy is increased by %co, . Note, however, that at larger
wave vectors the weights of the different excitations be-
come comparable. The dominance of the n =1 mode at
long wavelength does not occur in the presence of an

external potential, where Kohn's theorem does not apply,
an is not seen inn eo(") as we may see by comparing wi
Fig. 2. The translational invariance of the Hamiltonian is
re ecte w en6 d h the consistent local-field corrections are
added to the effective periodic potential of the H
ground state.

All response functions show a set of other peaks at
higher energies with decreasing strengths. These excita-
tions have, as far as we can judge from our numerica re-
sults, a very sma wi'dth much smaller in fact than their
energy an so appd so appear to be well-defined excitations within
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the TDHFA. As we increase the size of the matrix in the
equation of motion, more and more of these excitations
(at still higher energy) appear in the response function,
while existing excitations suffer no shift in energy. These
excitations are not numerical artifacts associated with the
truncation of our infinite-dimensional matrices. Similar
higher-energy excitations are also present in the RPA-
phonon formalism, ' where they can be identified as
single-particle local-oscillator excitations. In that case
they reQect the fact that the correlations in the RPA are

not strong enough to completely remove the single-
oscillator character of the Hartree electrons. Although
we do not yet have a complete understanding of their ori-
gin we believe that these higher energy modes are tr 1e ruy
p ysical and not an artifact of the TDHFA. Because the
electrons are not just point particles, a full description of
the density fluctuations must also contain information on
the ~&e deformation of the electronic wave functions on
length scales small compared to a lattice constant. In
analogy with the liquid phase described at the end of the
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last section [see Eq. (58)], the higher-energy modes prob-
ably are most usefully thought of as projections into the
first Brillouin zone of a complete dispersion relation
which extends to arbitrarily short wavelengths.

We identify the principal collective excitations with the
pole of biggest weight in O'"'. As we mentioned previ-
ously, the magnetophonon is an intra-Landau-level exci-
tation and appears as a pole of 8' ', while the magneto-
plasmon is an inter-Landau-level excitation and appears
as a pole of 8 . In all cases the weight of the collective(&)

mode is much larger than that of the other (anharmonic)
excitations so that the peak of the response may be
identified as the excitation energy and the dispersion rela-
tion of the modes determined. We remark that the col-
lective excitations are well defined in the TDHFA; i.e.,
the imaginary part of the pole is much smaller (at least
100 times smaller) than the real part, and so the excita-
tion is long lived. In fact, we find that the imaginary part
decreases as the size of the matrices in the equation of
motion is increased. Because of technical limitations on
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FIG. 4. Dispersion relations of the collective modes at filling factors (1) v= 7, (2) v= 4, and (3) v= 3, for (a) magnetophonons, (b)

magnetoplasmons, and (c) the n =2 excitation along the edges of the irreducible Brillouin zone of the triangular lattice shown in the
inset of Fig. 2(a) (k here represents the total distance, in reciprocal space, along the path I -J-X-I from the origin I ). The quantum
dispersion relations are represented by the solid curves. In (a) and (b) the dotted curves (slightly below the solid curves) are the
dispersion relation calculated for the harmonic lattice, while the dot-dashed curves (slightly above the solid curves) are the dispersion
relation given by the "effective" dynamical matrix discussed in the text. In (b) and (c), Am is measured with respect to %co, and 2%co„
respectively.
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increasingly locally unstable at these filling factors. (A
similar result was also found from a calculation of the
shear modulus by Maki and Zotos using a different ap-
proach. )

Because we do not introduce the displacement operator
in our analysis, it is not easy to calculate an effective
dynamical matrix from the observed dispersion relations.
We can, however, get some feeling for what the effective
dynamical matrix should be in the TDHFA by consider-
ing the following. The HF Hamiltonian giving rise to the
ground-state energy of Eq. (27) can be interpreted as
describing a system of electrons interacting through the
effective interaction

2

V,tt(q) = (~E& o )Fpp (g) [Ho(g) &p(g) ] (59)

0.00
0.0 0.5 1.0

(unit, s of 2~/a, )

1.5

FiG. 5. Dispersion relations of the magnetophonons for
filling factors v= —,

' for curves (1) and (4), v= —'3 for curves (2)

and (5), and v= —,', for curves (3) and (6} along the edges of the

irreducible Brillouin zone (see Fig. 4). The quantum dispersion
relations are represented by the solid curves (1)—(3). The dot-
dashed curves numbered (4)—(6) represent the dispersion rela-
tions as calculated with the "eA'ective" dynamical matrix dis-
cussed in the text. The curve labeled "hl" corresponds to the
harmonic result at filling factor v= —'3.

the size of these matrices, we cannot set a lower value for
the lifetime of these excitations within the TDHFA.

The dispersion relation of the collective modes for
filling factors v =

7 4 and —,
' are plotted in Figs.

4(a) —4(c). For the magnetophonon and magnetoplasmon
modes, the quantum dispersion relation is compared with
the dispersion relation calculated in the harmonic ap-
proximation. For n =2, where there is no corresponding
harmonic excitation, the collective modes are much like
the higher-energy anharmonic modes which occur for
n =0 and 1 and have very weak dispersion. We see from
Figs. 4(a) and 4(b) that the anharmonic corrections to the
magnetophonon and magnetoplasmon dispersion rela-
tions are deceptively small for v~ —,

' despite the large
zero-point motion. The quantum elfects (anharmonicity
and exchange) begin to appear strongly for v & —,

' as
shown in Fig. 5 for the magnetophonon dispersion rela-
tion (the magnetoplasmon dispersion relation has a simi-
lar behavior). In this figure the dispersion relation of the
magnetophonons is plotted for v=

3 p3 j5 For compar-
ison we have also plotted the harmonic lattice result (the
curve labeled "hl") at filling factor v= —,

'0. The energy of
the phonon excitation seems to saturate at above v= —,

' as
the filling factor is increased and then starts to decrease
at v=0. 45. The numerical results become rather noisy at
filling factors greater than 0.45 for the short-wavelength
part of the spectrum (especially in the I -X direction of
the irreducible Brillouin zone of the triangular lattice),
while the long-wavelength part of the dispersion relation
is well behaved. This indicates that the crystal becomes

Assuming that the crystal can be described by the Gauss-
ian density pattern of Eq. (29), we calculate the dynami-
cal matrix of Eq. (35) with the Coulomb interaction Vre-
placed by the effective interaction V,z. The dispersion re-

lations given by this "effective' dynamical matrix is

represented by the dot-dashed curve in Figs. 4 and 5. As
we see, this effective dynamical matrix gives a better ap-
proximation to the quantum result than the harmonic ap-
proximation for v —,', while for v) —,

' it reproduces quali-

tatively the behavior of the quantum result. Clearly, the
exchange interaction is very important for v ) —, and is re-

sponsible for the softening of the crystal for v) 0.45. Of
course, a still better effective dynamical matrix would be
obtained by allowing for the modification of the density
pattern at larger filling factors.

VI. CONCLUSION

We have presented a new approach for the derivation
of the collective modes of the Wigner crystal based on the
calculation of the density-density correlation function.
The interest of our approach is that it is not based on the
assumption that the displacement of an electron from its
lattice site is small so that it can account for an arbitrary
degree of anharmonicity and can even allow for itinerant
behavior of the electrons. Moreover, we calculated the
density-density correlation function of in the TDHFA so
that exchange interaction between the electrons is explic-
itly taken into account, both in the calculation of the
ground state (through the HFA) and in that of the
response function. En the high-magnetic-field limit, the
response function was shown to obey a relatively simple
equation of motion, thus simplifying greatly its numerical
evaluation as well as that of its poles, i.e., of the collective
modes of the crystal. We found that for filling factor
v —,', the dispersion relation of the quantum magneto-
phonon and magnetoplasmon are not very much different
from the dispersion relations calculated in the harmonic
approximation. At larger filling factor, however, ex-
change effects become important and lead ultimately to a
softening of the Wigner crystal at about v=0. 45.

The formalism presented in this paper is also valid at
finite temperature since the density-density correlation
function depends on T through (p(G, T) ) only. This
quantity can be calculated, at finite temperature in the
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HFA, using the approach developed in Sec. III in this pa-
per. Since the HFA does not include the long-range
correlations responsible for the collective modes, we do
not expect the calculation of (p(G, T) ) (and thus the cal-
culation of the TDHFA response function, which is
directly based on this quantity) to be directly relevant to
the description of the %'igner-crystal melting. Moreover,
since we are dealing here with a two-dimensional system,
the melting is likely to be based on the Kosterlitz-
Thouless mechanism. The finite-temperature HFA re-
sults can be of interest, however, on a more local scale
(i.e. , for very small crystallites) where long-range fluctua-

tions are irrelevant. The details of our results for the
finite-temperature HFA and TDHFA will be presented
elsewhere.
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