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Finite-temperature symmetry breaking in an anisotropic universe
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We calculate the critical temperature for the restoration of symmetry for a self-interacting scalar
field. The symmetry is spontaneously broken either by a negative mass or by its coupling to nega-
tive scalar curvature in a homogeneous, anisotropic spacetime.

I. INTRODUCTION

The early Universe is a physical environment where
both the quantum properties of matter and of gauge par-
ticles and their coupling to gravity must be included in
the analysis of physical phenomena. The early Universe
is also characterized by nonzero temperature and dy-
namical evolution in which nonperturbative field
configurations arise and multiple stages of phase transi-
tions may occur. Thus to describe physical phenomena
here a formulation of quantum field theory in curved
spacetime is needed as a first approximation to the ulti-
mate theory of quantum gravity unified with all other in-
teractions. Moreover for "applications to the early
Universe this formulation must be extended to a statisti-
cal quantum field theory in curved spacetime.

Homogeneous but anisotropic spacetimes can be used
to model the early Universe possessing a deformation de-
gree of freedom after the Planck era (10 sec). Quan-
tum fields on a nonmaximally symmetric spacetime back-
ground present us with an intricate symmetry structure.
At the classical level the scalar curvature acts as an
effective mass of the field and thus inAuences the phase
transitions of the system.

In this paper we investigate the symmetry behavior of
a self-interacting scalar field in a static homogeneous an-
isotropic spacetime (Taub) at finite temperature. The
zero-temperature theory in Taub spacetime has been con-
sidered in Ref. 1, the finite-temperature field theory in Aat
spacetime has been investigated in Ref. 2, the finite-
temperature field theory in static isotropic spacetimes in
Ref. 3, and the finite-temperature theory in dynamic
spacetimes in Ref. 4. A more complete list of references
on finite-temperature field theory in curved spacetimes
can be found in Ref. 4.

The spacetime is described by the Taub metric which is
an anisotropic generalization of the closed Robertson-
Walker metric and corresponds to a mixmaster space
with two of its three principal radii of curvature equal.
The spacetime background is treated classically since its
quantum nature will only appear near the Planck time.
The scalar field, on the other hand, is treated as a quan-
tum field at scales much larger than the Planck length.
Here we assume that the scalar field is in thermal equilib-
rium at temperature T, which is the central temperature
of the temperature ellipsoid as defined in Ref. 5 for aniso-

tropic spacetimes. The Taub spacetime is assumed static,
i.e., a frozen mixmaster universe. For a dynamic space-
time a quasithermal equilibrium can be maintained for
slowly varying background and sufhcient strong field cou-
pling and interaction.

A possible physical application is during the period be-
fore the onset of infiation [grand-unified-theory (GUT)
scale: 10 sec] when the Universe could have been in
an anisotropic state. An analogous physical situation
with similar mathematical formulation used here is shape
transitions of nuclei at finite temperature. In this analo-
gy the deformations that characterize the shape of nuclei
correspond to deformations of the Taub space which are
parametrized by the variable a. As the temperature is
varied di6'erent shapes of the nucleus become stable.

Another relevant problem is when the Taub space is
considered as an internal space in higher-dimensional
unification theories, where the four-dimensional gauge
symmetries correspond to isometrics of the internal
space. Then the critical temperature corresponding to
the transition from a deformed to a spherical space sig-
nals the restoration of an unbroken gauge symmetry.
Finite-temperature Kaluza-Klein theories are treated in
Ref. 8. Notice that this goes beyond previous works in
which only spheres were considered as internal spaces.
Here the anisotropic internal space leads to a more realis-
tic gauge-symmetry group.

The paper is organized as follows. In Sec. II we set up
the formalism for evaluating the e6'ective potential and
we find the critical temperature for symmetry restoration.
The relevant calculations are detailed in the two appen-
dixes.

II. EFFECTIVE POTENTIAL

We want to calculate the e6'ective potential for the
background field in an anisotropic spacetime at finite
temperature due to the quantum scalar-field Auctuations,
in the one-loop approximation. We will use Hawking's
zeta-function method. ' Our aim is to find the finite-
temperature contribution to the e6'ective mass of the
background field.

The background geometry has the Taub space form
with the metric

3

ds = dt + y l (tr~)—
a=1
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Here l, =i&&13 and the o "s form a basis one-form on S
satisfying the structure relations da'= —,'eb, o "6,o'. In
the Euler-angle parametrization" (0 & 0 & ~, 0 & P,
& zm ) the o "s are given by

cr' =cosg d 8+ sing sin 8 d P,
o = —sing dg+cosfsinOdg,

o'=dg+cos8dg .

(2.2)

The l, 's are the three principal curvature radii of the
homogeneous space and are constants for a static
universe. The general case with three different l, 's corre-
sponds to the diagonal mixmaster space. The case when
all three l, 's are equal is the closed Friedmann-
Robertson-Walker (FRW) universe.

The homogeneous anisotropic background geometry
depends on the scale a and the deformation a defined by

L = ——— +m +(1—g)—+—AP h
h 2 R
2 6

(2.9)

where A is the operator

+A'
with

A, =m +(1—g)—+—'A, P
R
6

(2.1 1)

(2.12)

Now the effective action which is related to the effective
Lagrangian X,s by

r[0 g. ]=jd' ' —g&.

The quantum field h satisfies, to the lowest order in h, the
equation

Ah =0, (2.10)

a=2l, , a=(l, /l3) —1 . (2.3)
is expanded in powers of h:

r[y] =s[y]+r'"+ r' .

Here S[P] is the classical action

S[P]=Jd"x&—g L' '[P],
41 i

—l3 6(1+—', a)R=
4l, a (1+a) (2 4) with

The range of a is —1&a, & ~ and +=0 corresponds to
the "round" S . We call the configuration with a) 0 ob-
late and that with a &0 prolate. The curvature scalar of
the geometry (2.1) can be reduced to'

(2.14)

(2.15)

The volume of the Taub space is given by

2K a
i/'1+a (2.5)

X' '[P]= ——'P — +m +(1—g)—P
——P4 . (2.16)

41

I'" is the one-loop effective action
A massive (m) scalar field P with quartic self-

interaction (A, ) coupled to a static Taub space is described
by the Lagrangian density

I '"= lnDet(p iA ):—f d xV —g X"' .
2

(2.17)

L[p,g, b ]= —
—,'p — +m +(1—g)—

(2.6)

where

=g"'V V = a
g )1/2gpv a

p v
( )1/2 g p Bx

(2.7)

is the Laplace-Beltrami operator on R ' XS and the cou-
pling constant /=0, 1 denotes conformal and minimal
coupling, respectively.

The action has a minimum of P =P, which is a solution
of the classical equations of motion. We consider quan-
tum fluctuations h around the classical background field

P and determine the effective action due to these fiuctua-
tions

—i I:4 a,„I . . —st%+ I,a,„] (2.8)

When X[P+h,g,b] is expanded about the background
field, the one-loop effects will be governed by those terms
which are bilinear in the quantum field h. We denote the
corresponding Lagrangian by L:

V'"(y) =-,'m'y'+(1 —g) y'+R p A. 4 (2.18)

We are interested in the case of broken symmetry. This
means that the coefficient of P in the classical is nega-
tive. For example, for a massless field this requires R &0;
that is, a must be in the range —1 &a & —

—,'. The ques-
tion we want to address is at what temperature the sym-
metry is restored such that P =0 becomes the energetical-
ly preferred state of the system.

We want now to calculate the one-loop finite-
temperature contribution to the effective mass of the
background field. We deal with renormalized parameters
throughout and we assume that the form of possible
finite-temperature divergences is the same as those of the
zero-temperature theory.

Here A is the operator encountered in (2.11) and I"'

denotes higher-loop contributions. The mass scale p is
needed to render the measure d [h ] in (2.8) dimensionless.
For a static homogeneous spacetime where P is a con-
stant field we can define the effective potential by
V(P)= —(vol) 'I (P) where vol denotes the spacetime
volume.

For an interacting scalar field the classical potential is
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We evaluate using Hawking's zeta-function' method
which gives finite results (no poles present):

2
2~p J(J+1) 1 1

P $2 i2 i2

2 vol
(2.19) +m +(1—g)—+—P

R
6 2

(2.20)

with

Pv)= g(S
M

where M labels the eigenvalues A,M of the fluctuation
operator and vol=PV with V the volume of the Taub
space. Here A,M are the eigenvalues of the operator A on
the Euclideanized metric obtained- from (2.1) by a Wick
rotation to imaginary time ~=it. The finite-temperature
T is introduced by imposing periodic boundary condi-
tions on r with period 13=T '. The topology of the
spacetime is now S'XS . The eigenvalues of the opera-
tor A in the Euclideanized Taub space with topology
S'XS are'

o =ma +!(g—1)Ra + —,'AP a —1

with a =2l „a = (l, /1z ) —1. We then have

AM=[n +cr+u(n —1 —2q) ]/a + 27Tp
2

(2.21)

(2.22)

and

Here M= Ip, J,K,L];p =0, 1, . . . ;J takes all values of
positive integers and half integers and K,L = —J,—J+1, . . . , J—1,J. Notice kM has an L degeneracy,
and the first term in A,M comes from the S' factor. We
make the following redefinitions where the discrete vari-
ables n and q take only integer values:

ri=2J+1, q =J—k,

n —1

P(v)=g(p kM) =(p) +AM =(p) 'g g g [n +o.+n(n —1 —2q) ]/a +
p n =1q=0

2 —v

(2.23)

To evaluate the finite sum we will use the Plana formula
(see Appendix A). We restrict our calculations to the
prolate configuration a &0 since in this case the curva-
ture can be negative and thus the scalar field can be in the
symmetry-breaking state (g) 0). Also the (p =0) mode
will give a subdominant contribution ( —1/P) to the
effective potential at high temperatures and can be
neglected. We are interested in a high-temperature ex-
pansion and the terms we keep to calculate the effective
mass are proportional to higher powers of 1/P than the
(p =0)-mode contribution.

We find, from the calculation in Appendix A,

—[(n iB) —E —] "I,
2yQ

1+&

E2 —c'2
1+a;

C2= 4Qy
2

(1+a)

Q

1+Ex

27Tp
2

G(y)= gnI[(n+iB) —E ]

(2.28)

g(v) =g(v)i+/(v)2,

where

(2.24) To evaluate F (y ) we express it in the form of a
Sommerfeld-Watson integral (see Appendix A),

g(v), =(ap) 'f dy M gF
0

with

(2.25) F(y)= —f dzz (z + 3 ) cot(~z),
2 c

and we find

(2.29)

F(y ) = g n'(n'+ A') ( 1) I (1—v)I (v ——', )
F(y) = —sin(harv)

I (
—

—,')

M(y) = 1+a( 1 —2y )~,

and

with

2
2

0 + Q 277p

M M P
(2.26)

g(v)z=(2i)(pa ) (1+a) g f G (2.27)
P

(2.30)

Next we evaluate G (y) in a similar fashion as F (y) (Ap-
pendix A). The result is given by (Ag).

For a second-order phase transition the effective mass
vanishes at the critical temperature. We want now to cal-
culate the dominant contribution for high temperature to
effective mass. From the calculations in Appendix 8 we
find that only the first term in g(0)i is relevant. All other
terms give subdominant contributions. We find
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r

V(1) — P 1 )
21TQ

(2.31)

With V=2~ a /(1+a)', the volume of the Taub
space, and I(a) depends on a, its explicit form given in
Appendix B. The subscript m denotes contribution to
the effective mass term of V& and is positive. Thus the
finite-temperature correction to the effective mass can
lead to symmetry restoration. Here we are assuming that
the classical mass m, i =m +(1—g)R /6 is negative. No-
tice that the scale p does not appear at this order. It will
appear at higher order (in P) terms which involve a prod-
uct of a lower power of 1/P with a logarithmic factor.
The p dependence will reside in the argument of the loga-
rithm. Thus to leading order in I/P the mass scale p
does not appear in V'". However, the total energy
V' '+ V'" should be p independent. Including the classi-
cal contribution to the effective mass we have, for the to-
tal energy,

R
Vp( )= &m +(1 g)

AA,
g( —1)

a
4 V

2
27TQ

y y2

2 2= —,m,sf (2.32)

with

1+ 40;
R=

g2 1+a

the curvature. We can find now the critical temperature
by setting m, & =0, when we have symmetry breaking at
the classical level either due to negative mass (m &0) or
to negative curvature (R &0). Notice P„;,-k'~ which
will be small for weak coupling A, . Thus high ternpera-
ture is a consistent approximation. From our result we
can see the interplay of curvature effects and finite tem-
perature. Negative curvature leads to symmetry break-
ing (g) 0) and finite temperature leads to restoration of
the broken symmetry.

perature also tends to zero as we approach the extreme
prolate configuration (a = —1) because the factor
I(a)/V(a) grows faster than R (a).

To investigate what type of phase transition occurs we
need to calculate higher-power contributions of the back-
ground field to the effective potential. These additional
contributions can be deduced from the expressions in the
appendixes. In particular we will need to include higher-
order contributions than 1/P to determine higher-power
contributions than P to the effective potential.

These higher-power terms of the effective potential be-
come relevant, for example, when we want to examine
the order of the phase transition at the critical tempera-
ture and thus deduce its applicability to the early
Universe, i.e., if it produces inflation consistent with ob-
servation. We know that an inflationary phase can hap-
pen if the system stays in a false vacuum for a long time
(in the Hubble time scale). There are two ways to achieve
this: (a) a barrier between the true vacuum and the false
vacuum (old scenario), ' (b) a slow evolution of the state
from the false vacuum to the true vacuum (new
scenario). If the phase transition is of second order nei-
ther condition can be satisfied and inAation will not
occur.

In the higher-dimensional unification context we can
consider the seven-dimensional spacetime R XTaub
XS'. Here we consider a free scalar field (A, =O) in the
seven-dimensional space (also zero background scalar
field) whose vacuum fiuctuations support the background
spacetirne via the Casimir effect. Now the effective po-
tential V(a, T) can be easily obtained by summing over
the infinite tower of massive states that the scalar field
generates when observed in the four-dimensional space-
time. The only difference from the expression (2.23) is
that g(v) in this case is multiplied by a function of v and
the exponent in the summation changes from —v to
—v+ —,'. At different temperatures T the minimum of V
will shift to different values of a, i.e., a;„(T). Since the
coupling constant depends on a (Ref. 15) we will have
variation of the coupling constant of the gauge theory
with temperature. There will also be a temperature T, at
which the internal manifold will explode and this should
be independent of the shape of the internal space. ' Fi-
nally with V(a, T), we can examine the stability of the
internal space at least with respect to squashing deforma-
tions at finite temperature.

uI. CONCLUSION

We have found that a self-interacting scalar in a
broken-symmetry state due to its coupling to the curva-
ture of the Taub space can be restored to the symmetric
state if it is heated to a high enough temperature. The
dependence of the critical temperature on the radius a
and the deformation parameter a can be deduced by set-
ting m, s=0 in Eq. (2.32). Notice that as we approach
the transition point (a= —

—,
' ) from the prolate to the ob-

late configuration the critical temperature tends to zero
since the curvature becomes positive. The critical tem-
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APPENDIX A

To evaluate the finite sum in (2.27) we use the Plana
formula
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g P(j)= f P(x)dx

l
oo

[P(n —,'+—iy) P—(n —,' —i—y )
p e 27Tg+ $

—P(m + ,'+—iy)

+P(m+ —,
' —iy)] .

0

Here P(z) is analytic in the region bounded by
(n —,'+i—~) and (m + —,'+i &n ) and for z =a+ib with a in

[n —
—,', m +—,

' ), P(z)e "~0when b ~+ ~ (Ref. 17).
To apply the Plana formula we need the pole structure

-lA ''

CI

FIG. 1. Paths C and C& for evaluating I' (y).

P(z)= [n +o.+a(n —1 —2z) ]/a + 27Tp
2 v

(A2)

for this we need to specify the sign, of a. For the prolate
case (a (0) the poles are at

1/2 2 1/2

with B and E defined in (2.32)
Now we proceed with the evaluation of F(y). The pa-

rameter A is positive since M is positive for the prolate
case and we consider only the case pAO. Expressing
F(y ) as a Sommerfeld-Watson integral

n 1 I 1 n'+~+a 2 2m
(A3) F (y ) = —' f dz z'(z'+ A ') cot(mz ) .

2 c (A6)

The poles are outside the region of integration
( ,', n ——

——,
' ) if a +a (2mb/P) )0 which is true for high

temperature provided pWO. This condition is sufficient
for our purposes [see comment following Eq. (2.23)].

To make the limits of integration in the Plana formula
independent of n we perform a change of variables
[y=(1+2x)/2n) in the first integral. The integrand
now becomes n P(x ) and P(x ) can be rewritten as

We deform the contour C to C, (see Fig. 1) and using the
CI path we find

F(y)= —e' d( ix )( —ix )—
2 oo

X[( ix) +—A ] cot( imx—).
+e ' 'f d(ix)(ix)

P(x)=(a) M (n +A ) (A4)
X [(ix ) + A ] cot(imx ) (A7)

P( ,'+iy—)=—(a)'(1+a) '[(n iB) —E ]-
P( ,' iy ) = (a—) —'(—1+a ) '[(n +iB )

—E ]
(A5)

where M (y) and A (y) are given in (2.30).
The g(v)z contribution comes from the second integral

in (Al). It can be simplified since P( —
—,'+iy )

=P(n —
—,
' iy) and s—imilar equality for the other two

terms. We can rewrite them as

from this the expression (2.30) can be easily derived.
Next we consider G (y). For the prolate case B is posi-

tive, C is negative, and for high temperature (with pAO)
E is also negative. Expressing the two terms in G(y) as
Sommerfeld-Watson integrals, as we did for the evalua-
tion of F(y) above, we find, after some changes of vari-
ables in the integrals (below E= E ~),

V

G(y) =( i )(sin~v) — [2(2E) 'I (2—v)I (2v —2)+2E(2E)' 'I (1—v)I'(2v —1)]
I (v)

—( —1) 'f dy[y+(E B)]y (y+2E)—

+2 ~
d [E (x B) ] +2—f d

[—E (x+B)]-
ii +E e 2'

—(cosmv) f dx(x)[E —(x B) ] +2f d—x(x)

(AS)
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APPENDIX B

We now evaluate the temperature sums. First we con-
sider g(v), . Since we are going to make a high-
temperature expansion we drop the second term in the
expression (2.30) because it is exponentially suppressed as
13~0. We denote the g function with the (p&0) mode
deleted by go: go(0), ( )—-—~g( —1)f dy(b c ) . (B4)

Here g is the usual Riemann zeta function. Since we are
interested in terms in g'(0)& with background-field depen-
dence we keep only the second term in the last expression
of (B3). This will give a contribution to the effective mass
term in the eft'ective potential. We denote this by a sub-
script m:

2v
QO

go(v), =2(ap) f dy M g I'
p=1

with

(Bl) ' For the broken-symmetry case

lo I= —ma —(1—g)—a +1——P a
6 2

p=1

, )- r(1 —v)r(v —
—,')F~—

2 r( —
—,') (sinmv) g

(B2)

(A, is small) and we get a contribution to V'":

V'" =—Zg( —1)B(m) 4 P V. (B5)

We rewrite A as A =b p (1—c /p ) with b =(1/
M)(2vra/B) and c = Io I(B/2m'a) and we make a small
13 (high-temperature) expansion of 3 ~:

g 3 —2v b 3 —2v y 3—2v( 1 C2/ 2)3/2 —v

p=1 p

=g( —3+2v) —
—,'c g( —1+2v)

with

1(ct)= 1dy 1 I 3+
o M 4 (1+a) 2 1+a

+ arctanhv' —a . (B6)
3

2 ct

+ —,'( —', —v)( —,
' —v)c g(1+2v)+ .

(B3)

It turns out that this is the dominant contribution to V"'
( —1/P ) because g(v)2 gives contributions to V'" start-
ing with terms proportional to 1//3.
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