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Taking the Liouville theorem as a guiding principle, we propose a possible generalization of classical

Hamiltonian dynamics to a three-dimensional phase space. The equation of motion involves two

Hamiltonians and three canonical variables. The fact that the Euler equations for a rotator can be cast
into this form suggests the potential usefulness of the formalism. In this article we study its general

properties and the problem of quantization.

I. INTRODUCTION

A notable feature of the Hamiltonian description
of classical dynamics is the Liouville theorem,
which states that the volume of phase space occu-
pied by an ensemble of systems is conserved. The
theorem plays, among other things, a fundamental
role in statistical mechanics. On the other hand,
Hamiltonian dynamics is not the only formalism
that makes a statistical mechanics possible. Any
set of equations which lead to a Liouville theorem
in a suitably defined phase space will do (provided
of course that ergodicity may be assumed). With
this in mind, let us consider the following scheme.

Let (x, y, z)=-r be a triplet of dynamical variables
(canonical triplet) which span a three-dimensional
phase space. This is a formal generalization of
the conventional phase space spanned by a canoni-
cal pair (p, q). Next introduce two functions, H and

G, of (x, y, z), which serve as a pair of "Hamilto-
nians" to determine the motion of points in phase
space. More precisely, we postulate the following
"Hamilton eq,atiOns"":

dx a(H, G)
dt a(y, z) '

dy a(H, G)
dt a(z, x} '

[F,H, G]. Obviously a PB is antisymmetric under
interchange of any pair of its components. As a
result we haveH=I' =0, i.e., bothH and G are
constants of motion. The orbit of a system in
phase space is thus determined as the intersection
of two surfaces, H =const. and G =const.

Equation (1}or (1'}also shows that the velocity
field dr/dt is divergenceless,

V (VH x VG) =- 0,

and this amounts to a Liouville theorem in our
phase space.

The above properties immediately tempt us to
construct a statistical mechanics where a canoni-
cal ensemble is characterized by a generalized
Boltzmann distribution in phase space with a
weight factor

e -8H-yC

Two temperaturelike intensive parameters are
thus required to specify the ensemble, much as
in a grand canonical ensemble.

It is obvious that this kind of generalization can
be extended to a phase space of any dimensionality,
n. We would introduce an n-component vector x&

and n —1 Hamiltonians H„and postulate in lieu of
Eqs. (1) and (2)

dz a(H, G)
dt a(x, y)

or in a vector notation

dr—=VHxVQ.
dt

For any function F(x, y, z), then, we have

dF a(F,H, G)
dt a(x, y, z}

= VF ~ (VHx VG} . (2)

We may call the right-hand side of (2) a general-
ized Poisson bracket (PB), to be denoted by

dF a(F,H„H„.. . ,H„,)

where c&»..., is the Levi-Civita tensor.
From the standpoint of physics, however, we

must first examine the relevance and applicability
of such generalizations. Are there real physical
systems which may be described in this way'P Or
else can one think of these generalizations as a
possible direction in which classical and quantum
mechanics might develop?

In this paper we will limit ourselves to the
three-dimensional case only. Then the first ques-
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H= —,'(L„'+I„'+I,').

%e believe this to be justification enough to ex-
plore further the proposed ideas at least for the
three-dimensional case. Needless to say, one

may in general consider a number of canonical
triplets r„, n =1, . . . , N which form a 3N-dimen-
sional phase space, and write in place of Eq. (2)

dF ~ a(F,H, G}
dt ~ a(x„,y„, z„)

' (8)

For example, this will enable one to handle a mod-
el which simulates coupled spin systems. ' For the
moment, however, we are interested in the basic
formalism only.

There is another direction in which Eq. (2) can
be generalized. It is to assume

dF ~ a(F,H„G, )

where (H, , G, ) are a given set of functions. Since
the Liouville theorem holds with respect to each
term separately, it also holds for the sum. But
the individual "HamQtonians" 0, , G, , are no longer
constants of motion in general, though there may
nevertheless be some constants of motion which
are not directly related to the Hamiltonians. This
may sound like an uninteresting and unnecessary
digression, but we will see later that it becomes
more natural when one tries quantization.

tion can be answered affirmatively: Equation (1)
is nothing but the Euler equation for a rigid rota-
tor, if we identify r with the angular momentum L
in the body-fixed frame, and G and H, respectively,
with the total kinetic energy and the square of an-
gular momentum in this frame:

1 L„L„

i.e., the Hamilton equations are form-invariant if
we use the new set of variables. In particular, the
Hamilton equations themselves generate an infini-
tesimal canonical transformation in view of the
Liouville theorem (8). On the other hand, not all
infinitesimal canonical transformations need be
generated this way. Moreover, two sets (H, G) and
(H', G') generate the same transformation if there
is a functional relationship H' =h(H, G), G' =g(H, G)
such that

a(H', G'}
a(H, G}

(10}

r'=Ar.
Equation (8) implies that the matrix A must be uni-
modular: detA =1. In other words, linear canoni-
cal transformations form the group SL(3,R). In
order to generate them we can conveniently take
H and G to be, respectively, linear and quadratic
forms in r:

H= Pa;r, , G =pm, B„r,,
i if

(12)

where B„ is a symmetric 3 x3 matrix. Then

r =ax(Br)
or

because then

a(H, G) a(H', G')
a(y, z) a(y, z)

Thus the Hamiltonians are defined up to the usual
type of canonical transformations (10) where
(H, G) are regarded as a canonical pair of vari-
ables. In order not to confuse this with the trans-
formations on (x, y, z} we will refer to (10}as
"gauge" transformations.

Linear canonical transformations form a special
class. %e may use the matrix notation

II. CANONICAL TRANSFORMATION

In this section we examine canonical transforma-
tions on the triplet (x, y, z), or more generally on
the set of triplets (x„,y„, z„).

We may call a mapping (x, y, z)- (x', y', z'} a can-
onical transformation if

('y', ')
a(x, y, z)

dF a(F H, G)
dt a(x, y, z)

a(F,H, G)

a(x', y', z') '

Hence

~ ~if% ~f ~Al +l '
fN

The number of parameters is 3 forH and 6 for G

but there is a redundancy under the scaling 0- M,
G- G/X. Therefore the degrees of freedom are 8,
the correct number for the group SL(S,R).

The Euler equations for a rotator belongs to a
slightly more complicated case where both H and
G are quadratic forms. Let us assume in general

H=(r, Ar), G =(r, Br},
where A and B are symmetric matrices. It is pos-
sible, however, to bring them into a standard di-
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agonal form

H = X(r', 1r'), G = (r', Ar') (15)

a a 8
5[ x, 1 yg y zg] — 5x, + 5yj + 5zg

Bx, by, Bz,

A- nA +I3B,

B-yA+5B, n5-Py=&
(16)

which forms a group Si.(2, H).
Let us now examine the case of many canonical

triplets as represented by Eq. (6). Here one can
define a PB to mean

s(A, B,c)
„,s(x„,y„, z„)

'

The canonical variables then have the properties

[x, , y, z„]=1 if I=m=n

=0 otherwise,

[x„x., z„]= [x, , x, x„) = 0, etc.

(18)

A canonical transformation {r„}—{r„'}will be a
transformation which leaves the PB form-invari-
ant. In other words, Eq. (17) must hold true for
{r„}when evaluated in terms of the new variables
{r„'}and vice versa.

In the case of an infinitesimal canonical trans-
formation r„-r„+5r„, Eq. (18) leads to

5[x, , y., z„]=[5x, , y., z„]

by a linear canonical transformation, provided
that A is positive (or negative) definite. For ex-
ample, first diagonalizeA by a rotation, then
make it proportional to a unit matrix by a unimod-
ular rescaling of the three coordinates. Finally,
make G diagonal by a second rotation. Equation
(5) for the Euler top corresponds precisely to such
a form. One should note also that there is a free-
dom of linear gauge transformations betweenH and

G, or equivalently between A and B:

=0
1 (20a)

5[x»x, z ) = — 5x, =0 (mt I), etc .(20b)
8

8~m

H= QH„(r„), G = QG„(r„). (21)

More general forms of H and G wi11 satisfy Eq.
(20a) but not (20b). On the other hand, Eq. (20a)
alone is sufficient to guarantee that the Liouville
theorem holds in the 3N-dimensional phase space.

The problem of an infinitesimal canonical trans-
formation can also be tackled from a different an-
gle. The standard general solution to an equation
like (20a) is

5r=V~A,

where A is a vector field, determined up to the
gradient of a scalar. Our Hamilton equation (2)
corresponds to a special choice

A =HUG (or -GVH).

(22)

(23)

As is well known, a transformation on (H, G) satis-
fying Eq (10) has .the property

The condition Eq. (20b) means that 5r„does not

depend on any r, , l t n. If so, then the first con-
dition (20a) is a simple statement for canonical
transformations of individual triplets. We are
thus led to a rather unexciting result that the only
continuous canonical transformations consist of
independent transformations of the individual trip-
lets. This contrasts with the case of usual canon-
ical doublets where a general transformation in-
volve all the variables simultaneously.

A corollary to the above result is that a Hamilton
equation like Eq. (6) cannot be regarded as gener-
ating successive canonical transformations unless
8 and G are simple sums

+[x, , 5y, z„]+[x,, y, 5z„] HOG -H'5G' = 5S (24)

=0

5[x, , x, z„]=[5x, , x, z„]

+[x, , 5x, z„]+[x,, x, 5z„] (19)

=0,

5[x, , x, x„]=[5x, , x„,x„]

+[x, , 5x„,x„]+[x,, x, 5x„]

=0, etc.

Most of these conditions are satisfied trivially be-
cause the {r„}satisfy Eq. (18). The only nontriv-
ial ones turn out to be

for some function S(G, G'). This induces a trans-
formation on A,

A- A+ VS, (25)

which is indeed a gauge transformation in the con-
ventional sense. On the other hand, Eq. (23) does
not exhaust all possible fields A, which have three
independent components.

This brings us finally to the type of generaliza-
tion represented by Eq. (7). Since more than two
functions {H„,G„}are now available, we should be
able to represent an arbitrary A this way. The
Hamiltonians are, however, again subject to gauge
transformations {H„,G„}- {H„', G„'} such that
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[L, , L,]- i-e„,aH/aL„.

This suggests a commutator algebra different
from (29):

(3o)

These are precisely the ordinary canonical trans-
formations with (H„, G„) being regarded as canoni-
cal pairs. and

[L& & Lg] = sea»K» &

[ L( & K)] =i 6() &

aH/ar, , = i[H, Z,].

(31)

III. (}UANTIZATION

Can one "quantize" our system of equations just
as the ordinary canonical formalism can be quan-
tized? This is an intriguing question which we
would like to investigate. The first problem is
how to define a quantization. One supposes that
quantization would be an algebraic mapping of the
relationships which characterize the canonical
formalism developed so far. As it turns out, this
is not an easy task. The PB defined in (2) has two
properties:

(a) Alternation law:

[A, B,C]=-[B, A, C] =[B,C, A] =

(a') [H,H, G]=[C,H, C]=O, (32a)

(b') [A,AR, H, G] = A, [A„H, G] + [A „H, G]A, ,

(32b)

However Eq. (31) is incompatible with the Jacobi
identity

[[r„,L,], r.,]+[[r.„r.,], r„]+[(r„,r„],r„]=o.
These considerations seem to indicate that we

had better relax the constraints on a PB in order
to find other solutions. If we want to keep only the
physical consequences of Eqs. (27a) and (27b) the
following conditions are also admissible for a PB:

In particular, [A, A, C] =0, etc. (27a)
where H and G are fixed. Still, we have three
options,

(b) Derivation law:

[A,A„B,C] = [A„B,C]A, +A, [A„B,C], etc.

(27b)

The first property guarantees that the Hamilto-
nians are constants of motion. The second makes
the PB appropriate for a differential equation.
Therefore it should be natural to characterize a
PB by Eqs. (27a) and (27b). But the main problem
lies in satisfying both of them simultaneously. In
fact we have not been able to find a solution beside
the classical one (2).

In order to gain some more insight into the situ-
ation we recall that the correct Eulerian equations
for a top are obtained in quantum theory by the
Heisenberg equation (with g =1)

iF =[F,G],

where G is the kinetic energy, Eq. (7), and the
angular momenta I., satisfy the commutation rela-
tions

—BAC —ACB —CBA (33a)
= A[B, C]+ Bf C, A]+C[A, B]
=(A, B]C+(B,C]A+[C,A]B

([ A, B]=—AB —BA), (33b)

which clearly satisfies Eq. (27a). The canonical
triplet (X, y, Z) will then have the property

[x, r, z] =i. (34)

(1) (s)+(6'), (2) (a')+(6) and (3) (c')+(1&') ~

In the following we study in some detail the case
(1) because the example of Pauli spin matrices
falls in this category and suggests a way to define
a PB. Case (2) retains the derivation law with re-
spect to A, B, and C. This is the most difficult
condition, and probably cannot be met. Case (3)
will be discussed later. Let us consider an oper-
ator algebra 9 generated by three elements, X, Y,
and Z, and define a PB by

[A, B,C] = ABC + BCA +CAB

[L;,L)] =-ce() L& (29)
The Hamilton equation should read

The derivation law is duly satisfied by Eq. (28).
[The anomalous sign on the right-hand side of Eq.
(29}is well known, ' but it is irrelevant to the dis-
cussion. ] Comparing Eq. (28) with our classical
form, Eqs. (2) and (5), we realize that the rela-
tions (29) were translated there as

i —= [F,H& G]
. dg

(35)

for arbitrary F. According to Eq. (33), a PB of
Hermitian operators is anti-Hermitian, so that
Eq. (35) is consistent if all physical quantities are
translated into Hermitian operators.
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We will next check the derivation law (27b}.
First of all it requires

[1,H, G] =0

as can be seen by putting A, = 1 in Eq. (27b). But
this means, from Eq. (33b),

[H, G] =0.

Then (R,', R,', R,') belong to the vector space of
(R„). In view of Eq. (33b) we have

[X, Y, Z] =-i Q R, R,'

3
=i QR R(. (44}

A -=[ A, H], A ' =- [A, G], (38)

or

[A, '] 'A„=A2[A~'] ' =-A, [A, '] ' =[A2'] 'A2

For generalA, andA„ then, Eq. (27b) can be re-
duced to

A, A2' —A, 'A, =0,

Equation (34) demands that this be a c number (in
an irreducible Hilbert space generated by R)
Therefore it must be a Casimir operator of the
Lie algebra. Then R and 8' must exhaust the gen-
erators, and hence N-6. There are only two such
possibilities, N = 6 and N = 3.

(a) If N = 6, the algebra is either SO(4) =SU(2)
xSU(2), SO(3, 1)=SL(2,c), or SO(2, 2). For the
first two cases, their generators (L, K) satisfy

whenever the division is possible. Thus

A =a A' (or A'=oA) (38)

for any A such that A ' ' (or A ') exists, which in
turn implies [K„K,) = ~ iL„etc., SO(4)

SO(3, 1)

[I„L2]=iL3, etc

[L„K,] =[K„L] = iK, , -etc. , (45)

H=n. G+P (or G=nH+P).

Here o. and f3 commute with all operators and
therefore are c numbers. But then

[A,H, G] =- -[A, PG] (or [A, PH))

(4o)

(41)

and the Casimir operators are

C =L'aK

C2 =~L K (46)

and by redefining PG- -G (or PH-H) we recover
the Heisenberg equation.

We conclude thus that if Eq. (33) satisfies the
conditions (27a) and (32b), one of the Hamiltonians
is a c number, and Eq. (35) is equivalent to a
Heisenberg equation. We may wonder at this point
whether we can avoid the rather disappointing re-
sult if we go over to Eq. (7). Following the same
arguments as before, we then arrive at the condi-
tions

P[H, , G,.] =0,
(42)

i(K, (-K2, Ks]+K2[K~, K,]+K~[K„K~]).

Without loss of generality one may put R; =i cK;.
In this way the solution is found to be

R =C,-"'K

The results for the case of SO(2, 2} are obtained
from that of SO(4) by a similar change of metric.

(b) If N =3, the algebra is either SO(3) = SU(2) or
SO(2, 1)=SU(1, 1). Their generators L satisfy

Z[A„H, )[A., G.) =K[A„G,][A.,H, )
[ L„L2]= +iL3,

SO(3}
80(2, 1) (48)

in place of Eqs. (37) and (38). It is not clear, how-
ever, whether or not these more general relations
admit nontrivial solutions.

Our next task is then to find realizations of the
PB for the canonical triplet. For this purpose let
us assume that the canonical variables R=(X, Y, Z)
generate, under repeated commutator operations,
a Lie subalgebra 8' of 8 which is semisimple. Let
the generators of 8' be (R„j, where the first three
elements coincide with (X, Y, Z). Further let

[L,L ] =iI, , [ L, L,] =iL,
with the Casimir operator

C=L2+L2+I 2
I 2 3

=-i(L [L L )+L,[L., I,]+I.,[I.„I,.]). (4&)

Thus the solution is

[R„R,] ==iR,',
[R„R,]=-iR,',
[R„R,] -=iR,'.

(43) R'=C-'"(L L ~L) SO(3)
80(2, 1) .

R = (X, Y, Z) = C "'(L„L„L,),
(50)
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(51)

[p„p,]=o, [P(, L(] =0.

The Casimir operators are

C, =P, +P, +P3,
C2 —L~ P~ + L2 P2 + L3 P3 . (52}

We are left with the cases where 8' is not semi-
simple. We wiQ discuss some representative
cases without claiming completeness.

(c) Euclidean algebra E(3) and its noncompact
version E(2, 1). These are derived from SO(4) and

SO(3, 1) by group contraction. The six generators
(L, P) obey the commutation relations

[L„L~]=siLB& [I,2, I.s] =iI,,& [L~& L,] =iL2,

[ L»P~] = -[L2, P,] = i P~ &

[ I,„P,] =+[I„,P,] =+iP, ,

[L„P,] =+[L„P,] =iP„

IV. USE OF NONASSOCIATIUE ALGEBRAS

In this section we pose the question whether it is
possible to realize the PB relations by means of
nonassociative algebras. ' As a matter of fact, we

immediately see that there is some hope, because
it takes three elements to characterize the nonas-
sociative nature of an algebra, just as we have a
PB involving three observables. The analog of a
PB in a nonassociative algebra is the associator

(a, b, c) = (ab)c —a(bc) (60)

which is zero if the multiplication table is actually
associative.

Let us now see whether or not one can identify
the associator with the PB under some combination
of conditions (27} and (32). First take the alterna-
tive (1) stated there Equa.tion (27a) then demands
that the associator is alternative:

The solutions for R and R' are given by

R = (M~) "'(L„L2,P~) &

R' = +C, '~~( P„P~, L3)

R=C2 '~ (P„I,2, L3),
R' =C2 '~ (L,& P2, Ps) .

[These are equivalent for E(3).]
(d) E(2) and E(1, 1}derived from SO(3) and

SO(2, 1) by contraction. The generators are
(L, P„P,}with the commutation relations

(53)

(a, b, c) = -(b, a, c) = (b, c, a) = (61)

That means that we are dealing with the alternative
algebra of Cayley and Dickson. ' The Cayley-Dick-
son algebra C is an algebra over real numbers
(or any suitable field) with eight basic elements u;,
i =0, . . . , '7, where u, serves as the unit element; it
is the only possible algebra of this kind.

Unfortunately, we run into trouble with the deri-
vation law (32b). The associator does not in gener-
al satisfy the derivation law, and conversely any
derivation algebra over the Cayley numbers is
known to be generated instead by operations of the
form Q, ,D, , on C, where

[L,P,]=iP, [I,, P ]=+iP, , [P„P]=0, (54)

and the Casimir operator is

C-aP +P

The solutions are

R =C "'(L, P„P-,),
R'=C ~'(0 M P )

(55)

(56)

(e} This case is characterized by the commuta-
tion relations of the Galilean group in one dimen-
sion,

D, ~x=a(bx) -b(ax)+(xb)a —(xa)b +(bx)a -b(xa),

D(a, b; x)—. (62)

D(a, b; x) is antisymmetric only with respect to a,
b, and for associative algebras reduces to

D(a, b; x) = [x, [a, b] ]. (63)

Suppose we now identify the PB [A, B, C) with
D(B, C; A), and B = H, C = G in the Hamilton equa-
tion. We have then switched to the alternative (3),
which requires Eq. (32a):

[x, r] =iz-', [x, z] =[ v; z] =o,

for which we have a representation

R= i —,—,x, R'= 00, —

(57)

(58)

D(H, G;H} = D(H, G; G}= 0.

This amounts to

[H, (HG) —(GH)] = [G, (HG) —(GH)] =0,

(64)

(65)

R=(-f, a 1), [I, el =-i. (59)

(f) By putting x=const. =1 in Eq. (58) we recover
the canonical formalism of quantum mechanics:

but there is no nontrivial solution to it.
On the other hand, we can give up Eq. (32a} if we

are considering Eq. (9) as the classical basis.
Then the form
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—=QD(H;G;;F)dP (66)
8 . 8R= i —,xy, i-bx' '

by

will certainly serve as a possible Hamilton equa-
tion. Since the multiplication table is preserved
under Eq. (66), it induces an automorphism on C.
It is known that automorphisms on C form a Lie
group of type G, . An element of C which is left in-
variant under (66}will be a constant of motion.

Let us leave the Cayley algebra and next shift
our attention to the Jordan algebra t, which is
commutative (but not associative). " The asso-
ciator has the property

(a, b, a) = 0, (a, b, a') = 0.
(The first is an identity which follows from the
definition. ) A derivation operator on J is given by

Finally there exists one Jordan algebra (the ex-
ceptional Jordan algebra) which is not isomorphic
to an algebra generated by Eq. (Vl)." It is an al-
gebra of 3 &&3 matrices I with elements in a Cay-
ley algebra. M has the typical form

fate 5}
M=/ c P a

%b a yl
where n, P, y are c numbers; a, 6, c are Cayley
numbers, where a is obtained from a by the invo-
lution u, -u„a;--u, (ix0). This should again
offer another possibility of realizing the PB rela-
tions.

D, ,x=(a, b, x) —(b, a, x). (68) V. SUMMARY

This allows one to define the PB as

-i[A, B, C]=De cA

=(B,C, A)-(C, B, A) (69)

and the Hamilton equation as

i —=[F,H, G],. dP
(Voa)

or more generally

= P[F,H„G,]. (VOb)

axb =-,'(ab+ba), (Vl)

where ab stands for a multiplication in the associ-
ative algebra 8. Going back to this realization,
we then find the PB (69}is given by

[A, B,C] =i[A, [B,C] ]. (V2)

This is the same form as Eq. (63), and Eqs. (VOa)
and (VOb} reduce to

i —=[F,X], X=i[H, G] or ig[H„G;]. (V3)
. dI'

I

In other words, it is equivalent to a Heisenberg
equation with Hamiltonian &. In addition, an ex-
ample of canonical triplet R satisfying

-i[x, r, z]=[x, [ r, z]]=1

can readily be found. In fact

(V4)

As before, we may add the condition (32a) in the
case of Eq. (VOa).

Now it is known that a Jordan algebra can be de-
rived from an associative algebra 8 if we define
the multiplication to mean

Taking the Liouville theorem as a guiding prin-
ciple, we have proposed a possible generalization
of classical Hamiltonian dynamics to a three-di-
mensional phase space. The equation of motion in-
volves two Hamiltonians and three canonical vari-
ables. A more general form may have many trip-
lets and many Hamiltonian pairs. Such a formal-
ism does not seem totally irrelevant to physics be-
cause the Eulerian top problem can be cast into
this form, and it offers a new possibility in statis-
tical mechanics. An attempt to find a "quantized"
version of the formalism, however, has been only
partially successful. In the process, the corre-
spondence between classical and quantized ver-
sions is largely lost. One is repeatedly led to dis-
cover that the quantized version is essentially
equivalent to the ordinary quantum theory. This
may be an indication that quantum theory is pretty
much unique, although its classical analog may not
be.

On the other hand, there remains some possibil-
ity that nonassociative algebras may also be in-
corporated into the new formalism. Jordan was
first led to what is now known as Jordan algebra
in an attempt to reformulate and generalize quan-
tum mechanics. ' Although our starting point and
motivation were different from Jordan's we have
also found the potential significance of nonassocia-
tive algebras.
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fessor K. Husimi who kindly took an interest in
my ideas when the contents of the first section
were conceived more than twenty years ago. I
woul. d also like to acknowledge the inspirations I
derived from recent communications with Profes-
sor F. Gursey' and Dr. Pierre Ramond regarding
nonassociative algebra.
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The quantum-mechanical problem of the relativistic cyclotron motion of a charged particle in a
uniform magnetic field is solved by consideration of the symmetry which the system obeys. It is shown

that its symmetry is isomorphic to the Lie group called G(0, 1) or G(1,0), and doubly degenerate
infinite series of wave functions with a constant energy eigenvalue are labeled by the eigenvalues of the

operators X', L +S„and S,. Here X is the relativistic Hamiltonian referred to in the present
problem, and L, and S, are the usual orbital and spin angular momentum operators, respectively.

I. INTRODUCTORY REMARK

In a previous paper' it was shown that the non-
relativistic Hamiltonian H

P„——y + P+—~, 1

which expresses the motion of a free electron in a
uniform magnetic field H directed in the z direc-
tion, apart from the z component of the space co-
ordinates, has a symmetry of the Lie group G(0, b)
generated by the infinitesimal operators A, , A, ,
and E (identity) defined as

A, =A„+iA, ,

. eHA„=-—-i y,Bx 2'
, eH

A, =-—+i x,

n.Anr
i By Bx k

They satisfy the following commutation relations:

[A„A ]=— E -=bE, -
[A~', A, ]=A. .

or

A g„=i|I„".
(4)

These functions are given explicitly in Ref. 1, and
each function is labeled by the eigenvalue of A,"'.
Here, A or A is nothing but the raising or low-
ering operator for angular momentum (L, or L ),
respectively. Further, when we define operators
B, and B, as

B, = A+ ' x+iy

c

B = — A+ ' x —iy

1/2

(n, -m, ),2eSH

[A",', A ]=-A .
Each operator commutes with 0"', and all degen-
erate eigenfunctions g„, $„', .. . of semi-infinite
numbers with a constant eigenvalue (n+-, )I&e, can
be obtained by operating with the A, operators on
any eigenfunction with the same eigenvalue; name-
ly,

A, g„=g„'


