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Self-organized criticality in neural networks from activity-based rewiring
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Neural systems process information in a dynamical regime between silence and chaotic dynamics. This has
lead to the criticality hypothesis, which suggests that neural systems reach such a state by self-organizing toward
the critical point of a dynamical phase transition. Here, we study a minimal neural network model that exhibits
self-organized criticality in the presence of stochastic noise using a rewiring rule which only utilizes local
information. For network evolution, incoming links are added to a node or deleted, depending on the node’s
average activity. Based on this rewiring-rule only, the network evolves toward a critical state, showing typical
power-law-distributed avalanche statistics. The observed exponents are in accord with criticality as predicted by
dynamical scaling theory, as well as with the observed exponents of neural avalanches. The critical state of the
model is reached autonomously without the need for parameter tuning, is independent of initial conditions, is
robust under stochastic noise, and independent of details of the implementation as different variants of the model
indicate. We argue that this supports the hypothesis that real neural systems may utilize such a mechanism to
self-organize toward criticality, especially during early developmental stages.

DOI: 10.1103/PhysRevE.103.032304

I. INTRODUCTION

Neural systems, to efficiently process information, have to
operate at an intermediate level of activity, avoiding both a
chaotic regime as well as silence. It has long been specu-
lated that neural systems may operate close to a dynamical
phase transition that is naturally located between chaotic and
ordered dynamics [1–4]. Indeed, recent experimental results
support the criticality hypothesis, most prominently the so-
called neuronal avalanches, specific neuronal patterns in the
resting state of cortical tissue which are power-law distributed
in their sizes and durations [5–9]. Studies suggesting that
neural systems exhibit optimal computational properties at
criticality [10–12] further support the criticality hypothesis.

However, which mechanisms could drive such com-
plex systems toward a critical state? Ideally, criticality is
reached by a decentralized, self-organized mechanism, an
idea known as self-organized criticality (SOC) [13–15]. Mod-
els for self-organized criticality in neural networks were
discussed even before experimental indications of neural criti-
cality [5], including a self-organized critical adaptive network
model [3,16], as well as an adaptation of the Olami-Feder-
Christensen SOC model for earthquakes [17] in the context of
neural networks [18].

The seminal paper of Beggs and Plenz [5] eventually in-
spired a multitude of self-organized critical neural network
models, often with a particular focus on biological details in
the self-organizing mechanisms. Some of these mechanisms
are based on short-term synaptic plasticity [19], spike timing
dependent plasticity [20], long-term plasticity [21], while oth-
ers rely on Hebbian-like rules [22–24] or anti-Hebbian rules
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[25]. For recent reviews on criticality in neural systems see
Refs. [26–31].

In this paper we revisit the earliest model, the self-
organized critical adaptive network [3], in the wake of the
observation of neural avalanches and ask two questions:
Does this general model still self-organize to criticality when
adapted to the particular properties of neural networks? How
do its avalanche statistics compare to experimental data? Our
aim remains to formulate the simplest possible model, namely,
an autonomous dynamical system that generates avalanche
statistics without external parameters and without any param-
eter tuning.

The original SOC network model [3] had been formulated
as a spin system in the tradition of statistical physics, with
binary nodes of values σ ∈ {−1, 1}, corresponding to inactive
and active states respectively. To study avalanches in the crit-
ical state, a translation to Boolean state nodes σ (t ) ∈ {0, 1}
is necessary, as has been formulated for modeling biological
networks in Ref. [32]. For an adaptive neural network model
with rewiring based on the correlation between neighboring
nodes [16], we demonstrated earlier that in such a binary
realization, avalanche statistics become accessible and exhibit
self-organized criticality [33]. Nevertheless, the correlation-
based rewiring of that model is not the simplest possible
rule, and its algorithmic implementation falls short of a fully
autonomous dynamical system: Its adaptation rule still uses
data from different simulation runs to determine the synaptic
change to be performed.

Therefore, we here reconsider the simpler activity-based
rewiring and reformulate our model as a fully autonomous
system with adaptation dynamics based on solely local infor-
mation. It uses Boolean state nodes on a network without a
predefined topology. The network topology changes by link
adaptations (addition and removal of links) based on local
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information only, namely, the temporally averaged activity
of single nodes. Neither information of the global state of
the system nor information about neighboring nodes, e.g.,
activity correlations [33] or retrosynaptic signals [21], are
needed. Last, it is well motivated by abundant evidence for
homeostatic processes in neural plasticity.

II. THE MODEL

Let us now define our model in detail. Consider a directed
graph with N nodes with binary states σ (t ) ∈ {0, 1} represent-
ing resting and firing nodes. Signals are transmitted between
nodes i and j via activating or inhibiting links ci j ∈ {−1, 1}.
If there is no connection between i and j, then we set ci j = 0.
Besides the fast dynamical variables σ (t ) of the network,
the connections ci j form a second set of dynamical variables
of the system which are evolving on a considerably slower
timescale than the node states σ (t ). Let us define these two
dynamical processes, activity dynamics and network evolu-
tion, separately.

A. Activity dynamics

The state σi(t + �t ) of node i depends on the input

fi(t ) =
N∑

j=1

ci j σ j (t ) (1)

at some earlier time t . For simplicity of simulation we here
choose a time step of �t = 1 and perform parallel update such
that this time step corresponds to one sweep where each node
is updated exactly once. Please note that random sequential
update as well as an autonomous update of each node accord-
ing to a given internal timescale is possible as well and does
not change our results. Having received the input fi(t ), node i
will be active at t + 1 with a probability

Prob[σi(t + 1) = 1] = 1

1 + exp[−2β( fi(t ) − 0.5)]
. (2)

Here, β is an inverse temperature, solely serving the purpose
of quantifying the amount of noise in the model. For the low-
temperature limit β → ∞ the probability Eq. (2) becomes a
step function which equals 0 for fi < 0.5 and 1 for fi > 0.5.
This function broadens for decreasing β, also allowing for
nodes being active once in a while without receiving any
input. Such idling activity is observed in cortical tissue and
will play a role in the evolutionary dynamics as defined in the
following.

This model attempts to formulate the simplest rules for the
activity dynamics possible, i.e., with the fewest states of the
nodes and the fewest parameters. Thus the dynamics neither
consider a refractory time nor a nonzero activation threshold.
Nevertheless, as shown in Sec. V, the mechanism driving the
network toward criticality works in very different biologically
inspired implementations of the model. This suggests that de-
spite being a coarse simplification of a real biological system,
the model can represent basic mechanisms that can also be at
work in real neuronal systems.

B. Network evolution

Following the natural timescale separation between fast
neuron dynamics and slow change of their connectivity, we
here implement changes of the network structure itself on a
well-separated slow timescale. For every time step, each node
is chosen with a small probability μ

N � 1 and its connectivity
is changed based on its average activity Ai = 〈σi〉W over the
time window of the last W time steps according to the follow-
ing rules:

(i) Ai = 0: add a new incoming link ci j = 1 from another
randomly chosen node j.

(ii) Ai = 1: add a new incoming link ci j = −1 from an-
other randomly chosen node j.

(iii) Ai �∈ {0, 1}: remove one incoming link of node i.
Thus, inactive (i.e., nonswitching) nodes receive new links,

while active (i.e., switching) nodes lose links. These rules pre-
vent the system from reaching, both, an ordered phase where
all nodes are permanently frozen, as well as a chaotic regime
with abundant switching activity. In particular, the system is
driven toward a dynamical phase transition between a globally
ordered and a globally chaotic phase.

Note that rewiring is based on locally available information
only. To simulate the way a single cell could keep a running
average, we also implemented the average activity of a node as
Ai(t + 1) = σ (t + 1)(1 − α) + Ai(t )α as the basic principle,
a biochemical average would be taken. Here, the parameter
α ∈ [0, 1] determines the temporal memory of the nodes (in-
stead of the averaging time window parameter W ). Since the
newly defined Ai can only approach but never attain 0 or 1, we
have to reformulate the criteria which determine the type of
rewiring to be performed. The condition for a node to receive
an activating link is transformed from Ai = 0 to Ai < ε with
ε � 1, the other criteria are changed correspondingly. Then,
we find that the model works accordingly.

For practical purposes, we perform the rewiring of only
one randomly chosen node i after every N

μ
sweeps, instead

of selecting every node with a certain probability μ

N at each
time step. Both implementations yield the same results. To
minimize the number of model parameters, we quantify the
separation between fast and slow timescales in the model
with one parameter by setting N

μ
= W and using W as the

parameter.
The proposed rules for the network evolution are inspired

by synaptic wiring and rewiring as observed in early devel-
opmental stages of neural populations or during the rewiring
of dissociated cortical cultures [34]. In these systems, home-
ostatic plasticity mechanisms are at work, which lead to
increased activity of overly inactive neurons and vice versa.
In Ref. [35] it was found that the application of inhibitory
neurotransmitters to pyramidal neurons in isolated cell cul-
tures, and thus a decrease of activity, leads to an increased
outgrowth of neurites. In contrast, if excitatory neurotrans-
mitters are applied, a degeneration of dendritic structures
is induced [35–37]. These observations were confirmed in
experiments where electrical stimulation of neurons showed
to inhibit dendritic outgrowth [38] and blocking of activity
resulted in increased growth of dendrites [39,40]. Thus, if a
neuron is overly inactive or active, it “grows and retracts its
dendrites to find an optimal level of input...” [41], which is
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FIG. 1. (a) Time series of the average in-connectivities and branching parameter for N = 1000, β = 10, W = 1000, starting from a
completely unconnected network. After a transient period, the average connectivities and the branching parameter become stationary. The
branching parameter fluctuates around 〈λ〉 = 1.10 ± 0.11, indicating possible criticality. (b) Evolution starts with an average connectivity of
〈k〉 = 2 for activating and inhibiting links. Even though having a very different initial configuration, the system evolves toward a similar steady
state as found in panel (a).

mimicked by the proposed rewiring rules. Similar homeostatic
adaption rules have been successfully used to model cortical
rewiring after deafferentation [42]. In recent models, home-
ostatic regulation has been proposed as a key mechanism of
self-organization and modulation of neural dynamics [43,44].

III. EVOLUTION OF THE NETWORK STRUCTURE

The evolution of the network starts with a specified initial
configuration of links c(t = 0) and the state of all nodes
set to σ(t = 0) = 0. Doing so, all activity originates from
small perturbations caused by stochastic noise. Applying the
rewiring rules, the system then evolves toward a dynamical
steady state with characteristic average numbers of activating
and inhibiting links.

As a convenient observable of the dynamical state of the
network, and an approximate indicator of a possible critical
state of the network, we measure the branching parameter 〈λ〉
by calculating, for every node i, how many neighbor nodes λ

on average change their state at time t + 1 if the state of i is
changed at time t . Averaging λ over the network indicates the
dynamical regime of the network, where 〈λ〉 = 1 is often used
as an indicator of criticality. Note that, by construction, 〈λ〉 de-
pends on the connectivity matrix ci j (t ) and on the state vector
σ(t ) and, therefore, has to be considered with some caution.
For example, its critical value may differ from one when
the evolved networks develop community structure or degree
correlations between in- and out-links or between nodes [10].
Therefore, we will here use the branching parameter for a
qualitative assessment of the network evolution, only, and
analyze criticality with tools from dynamical scaling theory
below.

Let us now turn to the evolutionary dynamics of the model,
starting from a random network c(t = 0) with only the av-
erage connectivity specified at t = 0. Figure 1(a) shows the
time series of the average number of incoming activating and
inhibiting links per node 〈k+〉 and 〈k−〉 starting from a fully
unconnected network. The figure also shows the temporal

evolution of the branching parameter 〈λ〉. At the begin-
ning of the network evolution, there are only a few links
between the nodes, and noise-induced activity dies out fast.
Therefore, the activity is very low, and only activating links
are added. As a result, the branching parameter increases.
When the value of 〈k+〉 approaches one, the activity starts
to propagate through the network and some nodes become
permanently active. This causes the rewiring algorithm to
insert inhibiting links. After some transient time, the aver-
age connectivities become stationary and fluctuate around a
mean value. The branching parameter also becomes stationary
and fluctuates around a value near one, indicating a possible
critical behavior. The ratio of inhibiting links to activating
links approximately attains 〈k−〉/〈k+〉 ≈ 0.3 which is close
to the ratio of inhibition/activation typically observed in real
neural systems [45]. The connectivity in the stationary states
exhibits Poisson-distributed degree distributions of incoming
and outgoing links.

Figure 1(b) shows the evolution of the average connectiv-
ities with different initial conditions. Here, the initial average
connectivities are chosen as 〈k+〉 = 〈k−〉 = 2. In contrast to
the starting configuration in Fig. 1(a), the network is densely
connected and the nodes change their states often. Since the
nodes rarely stay in the same state during the averaging time
W , links are preferentially deleted in the beginning. After a
transient period, the system reaches a stationary steady state
similar to the one already observed in Fig. 1(a), indicating
independence from initial conditions.

This scenario is reminiscent of synaptic pruning during
adolescence, where in some regions of the brain approx-
imately 50% of synaptic connections are lost [46]. It is
hypothesized that this process contributes to the observed
increase in efficiency of the brain during adolescence [47].
In the proposed model, starting with the densely connected
network shown in Fig. 1(b), the branching parameter is
considerably larger than one. In this state, information trans-
mission and processing are difficult since already small
perturbations percolate through the entire network. The
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FIG. 2. (a) The average connectivity of activating incoming links 〈k+〉 for different values of the averaging length W and the inverse
temperature β. The white dotted line is the upper bound of W given by Eq. (4). (b) The average branching parameter 〈λ〉 for different values
of the averaging window length W and the inverse temperature β. The average branching parameter is close to a typical value near one over a
broad range of (β,W ). The data was obtained by averaging over 30 000 evolution steps, system size is N = 1000.

decrease in the number of links leads to a network with
a branching parameter close to one, much better suited for
information processing tasks.

To explore the parameter dependency of the model, let us
now ask how the steady-state averages of the connectivities
and the branching parameter depend on the system param-
eters (β,W, N ). Figure 2(a) shows the average connectivity
of activating incoming links over a broad range of parameter
space. A prominent feature is the subcritical region (upper left
corner) where the algorithm fails to create connected graphs
and the average connectivity of incoming links is far below
one. This is due to nodes being predominantly active by noise,
instead of signal transmission. If a node i has no incoming
links its probability to be turned on at least once by noise
during the W time steps is given by

Prob(Ai > 0) = 1 −
(

1 − 1

1 + eβ

)W

. (3)

Therefore, demanding that on average not more than half of
the nodes should be turned on by noise during W steps gives
an upper bound for the time window W :

Wmax = − log 2

log
(
1 − 1

1+eβ

) . (4)

This boundary is shown as a white dashed line in Fig. 2(a),
obviously being a good approximation for the boundary of
the subcritical region. Most importantly, we see that if β is
sufficiently large, i.e., if the noise is sufficiently small, then
there always is a region in which connected networks emerge.
Since Wmax is independent of system size N , this also holds
for large systems. Figure 2(b) shows the average branching
parameter for the same range of (β,W ) as Fig. 2(a). Note that
〈λ〉 is close to a value slightly larger than one, over a wide
range of noise and averaging times. To explore whether this
indicates criticality (with a critical branching parameter value
larger than one for the evolved networks), let us now explore
other criteria of criticality.

IV. CRITICALITY

An important feature of critical systems is scale-
independent behavior, meaning that close to a phase transition
similar patterns can be observed on all scales. Near critical-
ity, correlations between distant parts of the system do not
vanish and microscopic perturbations can cause influences on
all scales. This also implies that power laws occur in many
observables, as, e.g., in the size distribution of fluctuations.

A. Avalanches of perturbation spreading

Let us now investigate the statistics of avalanches of per-
turbations spreading on the networks. Note that the network
evolution drives the system toward a state where activity never
dies out. Therefore, we cannot consider avalanches of activity-
spreading, as usually done in numerical experiments, with
one perturbation at a time. The problem of persistent activity
could be circumvented by introducing an activity threshold
that defines the start and the end of avalanches as done in
Ref. [48]. This procedure, nevertheless, is not reliable since
the introduction of an activity threshold can generate power-
law-like scaling from uncorrelated stochastic processes as was
shown in Ref. [49]. Instead, showing that the size and dura-
tion of the fluctuations are power-law distributed is a more
reliable procedure commonly used in statistical physics [50].
This method is related to the determination of the Boolean
Lyapunov exponent, which was used, e.g., in Ref. [51] to
examine the critical behavior of neural networks.

First, we let the system evolve until the branching parame-
ter and the average connectivities reach steady average values.
Then, noise is deactivated and a copy σc of the network is
made. One node of this copy is chosen at random and its
state is flipped: If it was active, then it is turned inactive
and vice versa. By comparing the temporal evolution of the
unperturbed system σ and the perturbed system σc one can
examine the spreading of this perturbation. For quantifying
the “difference” between the two copies it is convenient to use
the Hamming distance of the state vectors dH (σ, σc) which
is defined as the number of differing entries in σ and σc,
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FIG. 3. Avalanche statistics and collapse of avalanche profiles. (a) Avalanche duration distribution. (b) Avalanche size distribution.
(c) Average avalanche size over avalanche duration. (d) Collapse of avalanche shapes. The curves show the Hamming distance during
avalanches of lengths between 5 and 30. N = 2000,W = 1000, β = 10, data from 6 × 106 avalanches.

i.e., the number of nodes which deviate from each other in
their states. During the examination of one perturbation, the
rewiring algorithm is not in action.

Performing simulations we found that in most cases
dH (σ, σc) → 0 after some time, which means that the per-
turbed system falls back onto the attractor of the unperturbed
system. For a system of, e.g., 2000 nodes with β = 10 and
W = 1000, this was observed in more than 90% of all pertur-
bations.

It is straightforward to define the avalanche duration T as
the time between the start of the perturbation and the return of
σc to the same attractor as σ and the avalanche size S as the
cumulative sum of the Hamming distances between σ and σc

during the avalanche:

S =
T∑

t=0

dH [σ(t ), σc(t )]. (5)

From universal scaling theory [52] it is expected that these
observables exhibit power-law scaling at criticality:

Prob(S) ∼ S−τ , (6)

Prob(T ) ∼ T −α. (7)

Furthermore, it should also hold that the relation between
the average avalanche size and the avalanche duration shows

power-law scaling

〈S〉(T ) ∼ T −γ , (8)

with the exponents fulfilling the relation

α − 1

τ − 1
= γ . (9)

To further verify criticality it is possible to explicitly show the
scale-freeness of the avalanche dynamics. This can be done
by determining the average avalanche profiles (avalanche size
over time) for different avalanche durations. Scaled properly,
these shapes should collapse onto one universal curve if the
system is critical.

B. Results

Figure 3 shows the distribution of avalanche sizes and
durations as well as the collapse of avalanche profiles for
avalanches of different durations. Exponents were fitted us-
ing the estimator for discrete integer variables described in
Ref. [53].

Figure 3(a) shows that the avalanche duration scales with
an exponent of α ≈ 2.0332 ± 0.0004 up to the square root of
the system size.

Figure 3(b) reveals a power-law scaling of the avalanche
size with an exponent of τ ≈ 1.5428 ± 0.0002. Both

032304-5



LANDMANN, BAUMGARTEN, AND BORNHOLDT PHYSICAL REVIEW E 103, 032304 (2021)

FIG. 4. Scaling of the avalanche size distribution with increasing
system size N . Each distribution is obtained from 106 avalanches.
During one avalanche each node can only contribute once to the
avalanche size. Parameters: β = 10, W = 1000.

exponents α and τ are in line with experimental results [5,8].
Note that the right end of the avalanche duration and size
distributions underestimates the true numbers of avalanches,
as we here only count avalanches that return to the same
attractor as in the unperturbed network. Larger avalanches
more frequently end up in a different attractor when perturbed,
resulting in a larger fraction of long avalanches not counted in
the statistic.

Figure 3(c) shows that the relation between average
avalanche size and avalanche duration also exhibits a power-
law scaling up to the square root of system size with an
exponent of γ ≈ 1.92 ± 0.04. These exponents fulfill the re-
lation

α − 1

τ − 1
= 1.9036 ± 0.0003 ≈ γ , (10)

strongly suggesting that the system is critical.
Figure 3(d) shows the collapse of the activity curves onto

one universal shape, as it was also found in experiments [8],
reflecting the fractal structure of the avalanche dynamics.

A further verification of criticality can be found in Fig. 4,
which shows the avalanche size distributions for different sys-
tems sizes N . Figure 4 uses a different definition of avalanche
size than previously introduced. Here, instead of the sum
of Hamming distances between perturbed and unperturbed
networks, the avalanche size is the number of nodes that, at
any time, have had a different state in the perturbed and the
unperturbed network, where every node can only contribute
once to the avalanche size. This means that the maximum
avalanche size is N . With increasing system size the power-
law-like regions of the distributions increase, showing that the
cut-off is only a finite size effect.

V. OTHER VERSIONS OF THE MODEL

The main goal of this work is to present a minimal adaptive
network model that exhibits self-organized critical behavior.
At the same time, the model is supposed to be plausible, in
the sense that only local information is used to approach the
critical state. While we simulate this model on a von Neumann

computer, a fully autonomous implementation is possible.
To further demonstrate that our model represents a general
mechanism and does not depend on particular features of the
implementation, also variants of the model were tested.

A. Inhibiting nodes

We tested a variant that uses inhibiting nodes instead
of inhibiting links (and excitatory nodes instead of excita-
tory links). In this modified model, nodes are connected by
un-weighted links and the sign of the outgoing signal is
determined by the nature of the node. Before starting the
evolution of the network a fraction of all nodes is chosen to
be inhibitory. Here we typically choose 20–30%, as it is often
used as a rough approximation for real neural systems [45]
(simulations show that in the frame of the model the exact
number is not of importance). If an inhibitory node is active,
it contributes a signal −1 to the inputs of all nodes to which it
is connected via outgoing links, and vice versa for excitatory
nodes. Further, the network evolution rules of our model are
rewritten accordingly and now take the simple form:

(i) Ai = 0: add a new incoming link from another ran-
domly chosen excitatory node j.

(ii) Ai = 1: add a new incoming link from another ran-
domly chosen inhibitory node j.

(iii) Ai �∈ {0, 1}: remove one incoming link of node i.
We find that the dynamics of this modified version closely

resembles the dynamics of the original model.

B. Continuous link weights

Choosing discrete link weights ci j ∈ {−1, 0, 1} allows for
a minimalistic description of the model and to formulate sim-
ple rules for the network evolution. However, to mimic the
varying synaptic strengths of a real neural system, a version
with continuous link weights has also been examined. We find
that the following continuous rewiring rules lead to critical
behavior, as well. In the same way as in the original model,
after every W time steps, one node i is chosen at random.
Depending on its average activity Ai its linkage is changed
as described in the following:

(i) Ai = 0: randomly choose another node j. If ci j = 0,
then add a new incoming link ci j ∈ [0,�]. If ci j �= 0 multiply
the link weight by a factor [1 + δ sign (ci j )].

(ii) Ai = 1: randomly choose another node j. If ci j = 0,
then add a new incoming link ci j ∈ [−�, 0]. If ci j �= 0 multi-
ply the link weight by a factor [1 − δ sign (ci j )].

(iii) Ai �∈ {0, 1}: randomly choose one incoming link of
i. If |ci j | < 1, then set ci j = 0; otherwise, decrease the link
weight by a factor (1 − δ).

Hereby, the additional parameters δ and � should be cho-
sen such that δ � 1 to keep incremental changes small, and
� > 2 for new links to have a dynamical effect in the face of
the threshold update rule. Then the network robustly reaches
a critical state.

VI. CONCLUSION AND OUTLOOK

In this article, we tried to sketch the simplest possible neu-
ral network model that self-organizes toward a critical state,
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while reproducing detailed features of criticality observed in
real biological neural systems.

Note that the model involves only three parameters, none
of which is critical: The inverse temperature β determining the
amount of noise in the model, the averaging time W defining
the timescale separation between the fast neural dynamics
and the slow homeostatic plasticity, and the system size N .
None of these needs fine-tuning and they can be varied over a
considerable range.

The homeostatic evolution of the network connectivity is
based on the temporally averaged activity of single nodes
only. Thus, neither information about the global state of the
network, nor information about neighboring nodes is neces-
sary for self-organized criticality in this neural network. The
model is a variation of the earlier spin-based network SOC
model [3], in an implementation with neurons with states
zero and one, with a stochastic update rule, allowing for
spontaneous activity, and with an evolution rule that specifies
inhibitory and excitatory links separately.

Theoretical studies have demonstrated that neural net-
works can be tuned to criticality by properly adjusting the
ratio of activating and inhibiting nodes/links [48]. This is
in line with experimental results, which indicate that crit-
ical behavior arises in cortical networks with a balanced
activation/inhibition ratio [11,54]. In the model studied here,
we observe that the balance of inhibitory and excitatory links
self-organizes to a steady state. It is possible that mechanisms
of similar form help to keep the balance between activation
and inhibition especially during early developmental stages of
neural systems [34] where phases of rapid synaptic production
[46] and synaptic pruning occur [47].

In contrast to the classical models of self-organized crit-
icality, as, e.g., the sandpile model [13], the Bak-Sneppen
model of evolution [15], or the forest fire model [14], the
model we study here exhibits critical dynamics over a broad
range of noise. Indeed, it even utilizes noise to sustain activity

permanently. The origin of the noise resilience of this class of,
what we could call “robust self-organized criticality” models,
is the fact that the criticality of the system is stored in separate
variables, in our case in the links between the nodes, rather
than in the dynamical variables, the node states, themselves.
Classical SOC models, on the other hand, are more vulnerable
against noise as can be seen, for example, in the forest fire
model, where criticality emerges as a fractal distribution of
tree states that is easily disturbed. In our self-organized critical
adaptive network model, in contrast, noise may vary over a
broad range.

We have further explored the robustness of the rewiring
mechanism in different versions of the model where, for
example, inhibiting nodes instead of inhibiting links are im-
plemented or continuous link weights are used. This illustrates
that the observed self-organized critical characteristics arise
as stable phenomena independent of even major features of
the system, only depending on the structure of the rewiring
algorithm. Together with the robustness against noise, these
observations give strong support to the hypothesis that also
real biological neural systems could take advantage of this
simple and robust way to self-tune close to a phase transition.

Future work on minimal neural network models showing
self-organized critical behavior could focus on how criticality
influences learning, as it already has been touched on, e.g., in
Refs. [21,24]. Further insights into this field could not only
help our understanding of biological neural systems but also
motivate new ways of constructing artificial neural networks
optimally. The autonomous nature of the self-organized crit-
ical adaptive neural network should make it implementable
with memristors or other forms of neuromorphic hardware.
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