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It is widely recognized that balancing excitation and inhibition is important in the nervous system.

When such a balance is sought by global strategies, few modes remain poised close to instability, and all

other modes are strongly stable. Here we present a simple abstract model in which this balance is sought

locally by units following ‘‘anti-Hebbian’’ evolution: all degrees of freedom achieve a close balance of

excitation and inhibition and become ‘‘critical’’ in the dynamical sense. At long time scales, a complex

‘‘breakout’’ dynamics ensues in which different modes of the system oscillate between prominence and

extinction; the model develops various long-tailed statistical behaviors and may become self-organized

critical.
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Dynamical systems theory holds that systems of interest
should be structurally stable: their behavior should not
drastically change with small perturbations of the defining
dynamics [1]. Thus high-order criticality, the simultaneous
presence of several critical features such as Hopf bifurca-
tions, is not expected to be ever observed in a natural
system. However, natural systems lacking such structural
stability are not infrequent: within neuroscience examples
include dynamically critical systems such as line attractors
[2] in motor control [3] and decision making [4], self-tuned
Hopf bifurcations in the auditory periphery [5] and olfac-
tory system [6], and ‘‘regulated criticality’’ models [7].
There are also examples in neuroscience of statistical
criticality [8]: spontaneous heavy-tailed or scale-free fluc-
tuations typical of critical phase transitions, such as neuro-
nal avalanches [9], anomalous correlations in the retina
[10,11] and in functional imaging [12]; models based on
the nonlinear dynamics of spiking elements display ava-
lanchelike statistical criticality [13,14]. There is no real
understanding of a relation between these different con-
cepts of criticality; developed turbulence, a well-studied
example, displays both statistical criticality [15] and dy-
namical criticality (extensive number of zero Lyapunovs
[16]), but a relationship between them is far from clear.

We present a simple abstract model, an anti-Hebbian
[17] network which spontaneously poises itself at a dy-
namically critical state: an extensive number of degrees of
freedom approach Hopf bifurcations, becoming arbitrarily
sensitive to external perturbations. As the dynamics con-
trolling this state has itself a marginal fixed point, the
eigenvalues do not converge but fluctuate, close to the
imaginary axis; when they become slightly unstable, the
corresponding mode ‘‘breaks out’’ and becomes more
prominent, and as they become slightly stable the mode
slowly damps out. This breakout dynamics displays ava-
lanchelike activity bursts whose sizes may be power-law
distributed. Within these epochs the neurons of our model

are slightly correlated; yet, as the number of small but
significant correlations is high, the model has strongly
correlated network states [10]. This system is, on the short
time scale, sensitive in bulk to any outside input, even if
applied only to a small subset of the neurons. However, it
does not learn—being anti-Hebbian, it constantly forgets.
We can achieve learning by adding another plasticity term
‘‘positively’’ Hebbian to directed correlations, i.e., those
causal in the sense of Granger [18]. Then the network may
learn ‘‘predictable’’ stimuli and will display timing-
dependent synaptic changes reminiscent of spike-timing
dependent plasticity [19]).
The scope of this Letter is to demonstrate that a simple

dynamics based on activity-dependent plasticity may be
used, not to implement memory, but to create a large
number of states with very special sensitivity properties;
such states may be the substrate of interesting computa-
tional strategies. It is meant as an ‘‘existence proof’’: we
exhibit one exemplar of models displaying such behavior,
and conjecture this may be just one in a large family of
such models. Our scope is not to reproduce in detail any
neural function; our model is simplified so only the behav-
ior of interest is reproduced.
We now present our model. The activities of a set of

abstract neurons, encoded in the vector x, evolve under the
synaptic connectivity matrix W; meanwhile W itself
evolves, at a slower pace �, under an anti-Hebbian rule.

_x ¼ Wx (1)

_W ¼ �ðI� xx>Þ; (2)

where the matrixW encodes the synaptic connections, � is
the speed of synaptic evolution, assumed slow, and I is the
identity matrix. In a realistic model, to the right-hand side
(rhs) of (1) would be added inputs iðtÞ, neuronal noise �ðtÞ,
and nonlinear limiting terms such as x3, but we shall not
need them for our purposes. For sufficiently small �, _W
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integrates the rhs over a long period, and so we could
replace xx> with a local running average hxx>i: the matrix
W would stop evolving when the components of x have
unit variance and are uncorrelated to one another on epochs
Oð1=�Þ. The initial conditions at t ¼ 0, Wð0Þ and xð0Þ,
have elements given by independent Gaussian random
variables with unit variance.

The evolution of this system is surprisingly complex and
generates several different time scales, as shown in Figs. 1
and 2. On a time scale t � 1, the eigenmode e whose
eigenvalue has the largest positive real part diverges, in-
curring a large penalty _W � ��ee> eliminating it from
W, causing the real part to become negative; all other
eigenvalues with positive real parts follow suit until no
eigenvalue has a positive real part. A second dynamical
regime ensues in which the real parts of eigenvalues in-
crease at a rate � and approach zero. Finally, the eigenval-
ues have migrated to a strip around the imaginary axis,
where they oscillate around their equilibrium positions
(Fig. 2).

As the rhs of (2) is symmetric, the antisymmetric com-
ponent of the matrix W is an invariant of the motion; only
its symmetric component evolves. Calling S and A the
symmetric or antisymmetric components of W

_x ¼ ðAþ SÞx (3)

_S ¼ �ðI � xx>Þ (4)

_A ¼ 0: (5)

Take the time derivative of Eq. (4)

€S ¼ d

dt
_S ¼ ��

d

dt
xx> ¼ ��ð _xx> þ x _x>Þ: (6)

Use Eq. (3) to substitute _x, Eq. (4) to solve xx> ¼ I �
_S=�, and the symmetry of S and A to get

€S ¼ �2�Sþ ½A; _S� þ fS; _Sg: (7)

Equation (7) lives in a higher-dimensional space than
Eqs. (1) and (2), and so the solutions to Eqs. (1) and (2)
are embedded in this larger-dimensional space [20]. For
example, Eq. (7) has a fixed point SðtÞ � 0 which is not
attainable in the original dynamics.
A detailed analysis of Eq. (7) is beyond our scope; we

note that it contains the time derivative of

_S ¼ ½A; S� ¼ i½�iA; S�;
the Heisenberg equation for the evolution of operator S
under the (Hermitian) Hamiltonian �iA; S therefore has
one component that oscillates at frequencies given by A;
numerically, the amplitude of this component is S � Oð�Þ.
Equation (7) also contains the time-reversed Heisenberg
equation 2�S ¼ ½A; _S�, which causes much slower oscil-
lations of frequencies given by � and A. Finally, Eq. (7)
contains

€Sþ 2�S ¼ 0;

a set of uncoupled undamped harmonic oscillators with

frequency
ffiffiffiffiffiffi
2�

p
. There is therefore a new time scale given

by 2�=
ffiffiffiffiffiffi
2�

p
(Fig. 2). The nonlinear term f _S; Sgmakes large

initial values of Sðt ¼ 0Þ decay until Sðt � 1=�Þ �
Oð ffiffiffiffi

�
p Þ. In Ref. [21] we show that adding white noise to

Eq. (1) decoheres the dynamics a small amount but does

not destroy this time scale. The oscillation frequency
ffiffiffiffiffiffi
2�

p
is approximately the geometric mean between the neuronal
oscillation time scale (in this Letter, �1) and the synaptic
update time scale �. In a real neuron, the oscillatory time
scale is bound to be in the 10–120 Hz frequency bands,
while the synaptic update time scale would be in the order
of several minutes. The geometric mean between these,

FIG. 1 (color). Relaxation of the real parts of the eigenvalues
of W. For clarity of illustration, N ¼ 20. At short times (�1) all
eigenvalues with positive real parts relax to having negative real
parts; they typically overshoot and flip sign in doing so. On a
scale given by � ¼ 10�3, all real parts relax to the vicinity of the
real axis. Beyond this scale, all eigenvalues fluctuate around the
real axis.
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FIG. 2 (color). Zooming in the rightmost portion of Fig. 1.
Starting from an antisymmetric matrix, the eigenvalues fluctuate
around the instability line with a time scale � ffiffiffiffi

�
p

.
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marking the scale in which any given mode would sponta-
neously activate and deactivate, would be in the seconds
range, bridging these two scales; this time scale marks the
ability of our model to ‘‘switch task’’ and corresponds
roughly to the time scale of thought. ‘‘Slow’’ synaptic up-
date, in conjunction with the population dynamics close to
a dynamically critical state, creates this relatively fast time
scale: minute alterations in synaptic strength across a
population of neurons may change dynamical behavior of
the network in a mere fraction of the time required to swing
a single synapse from low to high strength.

Figure 3 displays the time evolution of our system
and some of its statistical features, for two different con-
nectivities. In the top row, Eqs. (1) and (2) are imple-
mented verbatim, and every matrix element may have
nonzero values. In the bottom row, the ‘‘1D3NN’’ model,
neurons on a line are connected to their first, second, and
third neighbors: W is heptadiagonal. Thus the top case is
‘‘infinite-dimensional,’’ while the lower one is one-
dimensional. Different features of the system become sta-
tistically critical in these two extreme cases. Avalanches
are defined as a cluster of contiguous times during which at
least one neuron is activated above a given threshold;
avalanche size is defined as the number of ‘‘pixels’’ in
the spatiotemporal plot above threshold during the ava-
lanche. The 1D case shows a propensity to have a large
number of violent, system-wide large avalanches; the 1D
case shows power-law-like probability of ‘‘avalanche’’
sizes, though due to the difficulty in evolving these equa-
tions the size of our system could not be made much larger.
The 1D case shows ‘‘regular’’ statistics for probability of

simultaneous firing as well as Gaussian marginal distribu-
tion of the values of x, while the1D case shows anomalous
probabilities of simultaneous firing, even though individual
neurons display small correlations, as in [10], and non-
Gaussian marginals.
In an attractor neural net, such as a Hopfield net, the

antisymmetric component A of W is either null or small,
and learning is carried out by using a Hebbian rule, which
then encodes the learned objects in the symmetric part S of
W. In our case, anti-Hebbian dynamics takes control of S
and uses it to create the critical, highly resonant state we
have described. Meanwhile A is evidently untouched by
Eq. (2) and is the only degree of freedom available for
learning in our system. The xx> term is an instantaneous
density of correlation, which Eq. (2) integrates in time due
to the smallness of �; rewrite it as

ðxx>ÞijðtÞ ¼
Z

�ðsÞxiðtþ sÞxjðt� sÞds: (8)

An antisymmetric analog of this correlation density in the
rhs of Eq. (2) would be given by partial directed correla-
tions, which attempt to isolate influences between time-
series embodying Granger causality [18]. Such correlation
functions are obtained through a kernel which is antisym-
metric in time, causing the correlation density to become
antisymmetric in the neuron indexes; the simplest analog
of Eq. (8) is the Hilbert transform

Cij ¼
Z 1

s
xiðtþ sÞxjðt� sÞds: (9)

The Hilbert transform kernel 1=s is divergent at both short
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FIG. 3 (color). Statistical criticality in our model. Top row: Globally coupled (unrestricted W). Bottom row: Nodes arranged in one
dimension with periodic boundary conditions; only entries of W up to third nearest neighbor are allowed to be nonzero. First
column: A display of the spatiotemporal dynamics. Second column: The distribution of the number of simultaneously active units in
the dynamics (blue) and in surrogate data (red); compare to [10], where the argument was made this distribution indicates that even
though the two-point correlations between individual neurons are small, the system has globally correlated states. Third column: Sizes
of avalanches (blue) versus surrogate data (red); note in the 1D case the power-law distribution of avalanche sizes, while the globally
coupled (1D) case shows a piece of a power law followed by a large lump of rather large avalanches (as clearly visible in the
spatiotemporal plot). Fourth column: Marginal distribution of the values of x (invariant under surrogation). Surrogation is carried out
by scrambling the pixels of the spatiotemporal plot.
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and long time scales, and should be cutoff according to the
fastest and longest time scales which the system can use for
its evaluation; the fast time scale controls the transition
between increasing synaptic strength when the presynaptic
neuron leads the postsynaptic one, to decreasing it in the
opposite case, and reflects the accuracy with which the
system can compute simultaneity. The slow time scale
controls how much memory is kept of previous activity,
i.e., over which range time intervals the presynaptic and
postsynaptic activities are evaluated. When the Hilbert
kernel is cutoff according to these two time scales, the
synaptic rule left looks qualitatively like spike-timing de-
pendent plasticity [19].

Our model proposes a view of neural systems as showing
coexistence and superposition of different modes of neuro-
nal activity, which can be simultaneously long-lived in
terms of the time scales of electrical activity, yet extremely
fast in terms of synaptic update time scales. The funda-
mental distinguishing factor between each of the activated
modes is the different phase relationship of each neuron
with respect to the underlying oscillation. Since the dy-
namics consists of the activation and deactivation of modes
of behavior given by eigenvectors which are in general
delocalized, the dynamics of our net is resilient to stochas-
ticity or even failure in individual units. Detailed analysis
of this resilience shall be carried out elsewhere. Similarly,
because the dynamical modes are delocalized, the system
is sensitive to the topological structure of the underlying
network on scales much longer than individual connections
or plaquettes. This extended spatial sensitivity mirrors the
extended temporal behavior discussed above and will be
explored elsewhere.

We have presented a simple model in which an under-
lying anti-Hebbian dynamics permits the system to use the
symmetric components of its synaptic connectivity to poise
itself at a dynamically critical state and becomes infinitely
susceptible to inputs which, once applied, can reverberate
for long times. In the absence of inputs, this state evolves
by the eigenvalues oscillating around the stability line, so
different modes (eigenvectors) break out and then extin-
guish haphazardly, with a time scale which bridges the
electrical and synaptic time scales. We have shown that
learning can be encoded in the antisymmetric component
of the synaptic connectivity, driven by a term antisymmet-
ric both in space as well as time—only inputs which are
Granger-causal and time-symmetry broken can be learned
by this system. We have analyzed the statistics of our
system to show that it can generate anomalous, heavy-
tailed distributions, as well as power-law avalanches,
showing explicitly a connection between criticality in the
dynamical and statistical senses. Finally, our model is
intended to provide a scaffold to explore the implications
of the reverberating circuit theory introduced by
Lorente de Nó and furthered by Lashley and Hebb [22]
which, for all their influence in physiology and behavior
science, have not found consistent formal expressions.

Supported in part by MCI project CGL2008-06245-
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