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Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional
quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton
phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the
tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively.
The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge
theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The
duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the
existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic
fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route
to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases
are relevant to the study of interacting topological crystalline insulators.
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Introduction.—There has been a recent surge of theoreti-
cal interest in a new class of quantum phases of matter
featuring excitations of restricted mobility. The archetypal
examples of this phenomenon are models that exhibit
“fracton” excitations, particles which are strictly immobile
in isolation, but which can move through interaction with
other particles. More generally, there are particles which
move freely only along certain subspaces while being
immobile in the transverse directions, exhibiting subdimen-
sional behavior. Fractons and other subdimensional particles
were first seen in the context of certain exactly solvable lattice
models [1–8]. It was later realized that these exotic phases of
matter have a natural theoretical description in the language
of tensor gauge theories, which feature higher moment
charge conservation laws restricting the motion of particles
[9–11]. There has been rapid recent progress in the field,
establishing connectionswith quantumHall systems [12,13],
gravity [14], and glassy dynamics [15,16], among many
other theoretical developments [17–30].
Despite extensive studies of their exotic properties,

fracton models have so far been lacking concrete physical
realizations. To this end, in this Letter we explicitly
demonstrate that, intriguingly, a two-dimensional quantum
crystal realizes a fracton model described by a noncompact
rank-two tensor gauge theory. This duality is a direct tensor
analogue of the familiar particle-vortex duality relating a
two-dimensional superfluid to a noncompact U(1) gauge
theory [31,32]. As summarized in Fig. 1(a), the longi-
tudinal and transverse phonons of a crystal map onto the
two gapless gauge modes of the tensor gauge theory, with
the phonon momentum and strain tensor mapping onto the
magnetic and electric tensor fields. Concomitantly, the
topological lattice defects map directly onto the gauge

FIG. 1. (a) The Fracton-Elasticity Dictionary: Excitations and
operators of the scalar-charge tensor-gauge theory are in one-to-
one correspondence with those of a two-dimensional quantum
crystal. (Pictures of lattice defects adapted from Ref. [37].) (b) A
dislocation can only freely move by gliding along its Burgers
vector b⃗, while dislocation climb (motion perpendicular to b⃗)
requires the presence of vacancy or interstitial defects.
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charges. Specifically, disclinations and dislocations corre-
spond to fractons and dipoles, respectively. In this way, the
constrained mobility of fracton models is demystified in
terms of the well-known restrictions on motion of a crystal’s
topological defects. Dislocations can only glide along their
Burgers vector, as shown in Fig. 1(b), while transverse
motion (dislocation climb) requires the absorption or emis-
sion of vacancies and interstitials. Similarly, any motion of a
disclination creates a “scar” of extra dislocations in the
crystal [33–36]. There are no local processes which move a
single disclination, which is therefore immobile in isolation,
a manifestation of the fracton phenomenon.
Utilizing this duality, we make numerous predictions

about the phases and phase transitions of the fracton gauge
theory by mapping onto established results in elasticity
theory. For example, the fracton system will exhibit natural
gauge theory analogues of the commensurate (vacancy- or
interstitial-free) crystal, supersolid, hexatic, and isotropic
fluid phases. We can thereby also determine the critical
properties of transitions between these phases. By general-
izing the duality to elasticity theories of other physical
systems, such as three-dimensional crystals, magnetic
Wigner crystals and liquid crystals, our arguments provide
a route to the discovery of new fracton phases. In turn, the
conservation laws of fracton gauge theories provide a
convenient and systematic tool for encoding and analyzing
the dynamics of crystal defects. As a further application
of the duality, we discuss the relevance of fracton theories
to the study of interacting topological crystalline insulators
(TCIs).
Duality.—We begin by presenting a streamlined deriva-

tion of fracton-elasticity duality, relegating a more detailed
derivation and discussion to a companion paper [38]. Dual
gauge formulations of elasticity theory have been inves-
tigated in the past [39], though with different focus and
without making physical connection with fracton theories,
which is the aim of the present work. The theory of
elasticity is conveniently formulated in terms of a phonon
vector field uiðxÞ representing the displacement of an atom
from its equilibrium position. The low-energy action for the
displacement is given by [40–42],

S ¼
Z

d2xdt
1

2
½ð∂tuiÞ2 − Cijkluijukl�; ð1Þ

where uij ¼ 1
2
ð∂iuj þ ∂juiÞ is the linear part of the

symmetric strain tensor and Cijkl is a matrix of elastic
constants, with its components determined by the under-
lying lattice. It is useful to separate the displacement field
into its singular and smooth phonon pieces, in terms of

which we write uij ¼ uðsÞij þ 1
2
ð∂iũj þ ∂jũiÞ, where ũi is a

smooth single-valued function, and the singular strain

component uðsÞij is sourced by topological defects via

ϵikϵjl∂i∂jukl ¼ ϵikϵjl∂i∂ju
ðsÞ
kl ¼ s: ð2Þ

The disclination density s ¼ ϵij∂i∂jθb is defined as a
singularity of the bond angle, θb ¼ ϵkl∂kul, giving
s ¼ ϵij∂i∂jðϵkl∂kulÞ. Dislocations are also implicitly
accounted for in this treatment, since a dislocation can
be regarded as a bound state of two disclinations
[37,40,41,43], as we will see explicitly.
We now introduce two Hubbard-Stratonovich fields, a

momentum vector πi and a symmetric stress tensor σij. In
terms of these variables, we rewrite the action as,

S ¼
Z

d2xdt

�
1

2
C−1
ijklσ

ijσkl −
1

2
πiπi

− σijð∂iũj þ uðsÞij Þ þ πi∂tðũi þ uðsÞi Þ
�
; ð3Þ

with the original action recovered by integrating out the
fields πi and σij. The smooth displacement field ũi can now
be integrated out, thereby enforcing the constraint,

∂tπ
i − ∂jσ

ij ¼ 0; ð4Þ

which is simply the continuum form of the Newton’s
equation of motion, relating the stress imbalance to the
rate of change of lattice momentum. To solve this con-
straint, it is convenient to first introduce rotated field
redefinitions, Bi ¼ ϵijπj and Eij

σ ¼ ϵikϵjlσkl, which trans-
forms the Newton equation constraint Eq. (4) into the
generalized Faraday equation, appearing in fracton tensor
gauge theories [10],

∂tBi þ ϵjk∂jEki
σ ¼ 0: ð5Þ

The label σ on the field Eij
σ indicates its relation to the

rotated stress tensor.
The general solution to this equation is conveniently

expressed in terms of a symmetric rank-two tensor gauge
field, Aij, and a scalar potential, ϕ, (in analogy with the
potential formulation of Maxwell’s vector electrodynamics)

Bi ¼ ϵjk∂jAki; Eij
σ ¼ −∂tAij − ∂i∂jϕ; ð6Þ

with ϕ playing the role of the Airy stress function of static
elasticity theory. Note that the fields Eij

σ and Bi are invariant
under thegeneralized gauge transformation on the potentials,

Aij → Aij þ ∂i∂jα; ϕ → ϕþ ∂tα; ð7Þ

for arbitrary function αðx; tÞ. The potential formulation has
therefore introduced a gauge redundancy into the problem.
Expressing the action Eq. (3) in terms of electric and
magnetic fields, using the potentials in Eq. (6) inside the
last two terms, integrating byparts and utilizing the definition
of the disclination density Eq. (2), we obtain,
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S ¼
Z

d2xdt

�
1

2
C̃−1
ijklE

ij
σ Ekl

σ −
1

2
BiBi − ρϕ − JijAij

�
; ð8Þ

where C̃ijkl ¼ ϵiaϵjbϵkcϵldCabcd is a function of the elastic
coefficients, ρ ¼ s is the disclination density, and Jij ¼
ϵikϵjlð∂t∂k − ∂k∂tÞul is the current tensor capturing the
motion of dislocations and disclinations, as introduced in
Ref. [10,44]. For a dislocation with Burgers vector bl

moving at velocity vj, this tensor takes the form Jij ¼
ϵðilvjÞbl [45], with the trace Jii describing dislocation climb
[44,46]. The action of Eq. (8) is in precisely the form of the
scalar-charge tensor gauge theory, allowing for anisotropy in
the electric field term, with disclinations playing the role of
fracton charges [10,12]. This action leads to two gapless
gauge modes, corresponding to the longitudinal and trans-
verse phonon modes of elasticity theory.
We note in passing that this gauge theory does not

support instanton events in the path integral, which would
correspond to terms in the elasticity Hamiltonian that
explicitly breaks translational symmetry and gaps out the
phonon modes, as could arise via coupling to a substrate.
For a conventional crystal, which breaks an underlying
translational symmetry spontaneously, instantons are for-
bidden and the gauge field is noncompact, as discussed
further in the companion paper [38].
It will also be useful to introduce a canonical conjugate

electric tensor field, Eij ¼ −∂L=∂ _Aij ¼ C̃−1
ijklE

kl
σ , in terms

of which the tensor gauge theory Hamiltonian is given by

H ¼
Z

d2x

�
1

2
C̃ijklEijEkl þ

1

2
BiBi þ ρϕþ JijAij

�
: ð9Þ

Note that the scalar potential ϕ does not have a conjugate
field, but it rather acts as a Lagrange multiplier enforcing
the scalar Gauss’s law constraint,

∂i∂jEij ¼ ρ: ð10Þ

This constraint is the dual formulation of Eq. (2), defining
the disclination density. We see that the duality maps Eij to
a rotated strain tensor via Eij ¼ ϵikϵjlukl, while the
closely-related “velocity”-like field, Eij

σ is mapped to a
rotated stress tensor via Eij

σ ¼ ϵikϵjlσkl. The relation E
ij
σ ¼

C̃ijklEkl between the two electric field tensors exactly
mirrors the relation σij ¼ Cijklukl between the stress
and strain tensors. The Gauss’s law Eq. (10) is notable
for leading to conservation of both charge and dipole
moment [9]

Q¼
Z

d2xρ¼ const; P¼
Z

d2xðρxÞ ¼ const: ð11Þ

The conservation of the dipole moment has the dramatic
consequence that an isolated charge is strictly locked in

place, since a motion of a fracton charge proceeds by a
creation of a dipole moment; thus, it would violate dipole
charge conservation. The presence of this extra conserva-
tion law therefore directly encodes the fractonic behavior of
disclinations.
The dipole moment conservation law also implies that a

dipole is a topologically stable excitation, since it cannot
decay directly into the vacuum. In elasticity language, this
corresponds to a bound state of two equal and opposite
disclinations, known as the dislocation defect [40,41]. We
can check this correspondence explicitly by studying the
total dipole moment contained in a region V. Assuming the
region has zero net charge (so that the dipole moment is
independent of origin), we can write the dipole moment in
the form,

Pi ¼
Z
V
d2xðρxiÞ ¼

I
∂V

dsj∂jðϵikukÞ;

¼ ϵikΔuk ¼ ϵikbk; ð12Þ
where Δuk is the net change in the displacement uk going
around the boundary of a region V, which is precisely the
definition of a Burgers vector b. From this, we see that
the dipole matches explicitly with a dislocation defect,
P ¼ ẑ × b, with the dipole vector perpendicular to the
Burgers vector. With this correspondence in place, the
fracton-elasticity dictionary is now complete, as summa-
rized in Fig. 1.
One important additional property of a crystal that dual

gauge theory must capture is that in the absence of
vacancies and interstitials a dislocation can only move
along its Burgers vector, i.e., it can glide but it is unable to
climb. On the other hand, by itself a conservation of a
dipole moment does not place any fundamental restriction
on the motion of a dipole. To see how the one-dimensional
constrained dipole dynamics arises in the tensor gauge
theory, we consider a particular component of the quadru-
pole moment. Following the standard analysis of fracton
theories [9], it is straightforward to derive the following
conservation law,

Z
d2xðρx2 − 2Ei

iÞ ¼ const: ð13Þ

Any longitudinal motion of a dipole requires a change of
this quadrupole moment, which, as we see from the above
constraint, is necessarily accompanied by a change in Ei

i.
To understand the physical meaning of this conservation
law, we rewrite the trace in elasticity language,

Ei
i ¼ ∂iui ¼ nd þ ∂iũi; ð14Þ

where we have broken up the divergence into nd, the
number of vacancies minus the number of interstitial
defects, and a smooth elastic piece ũi. We can then write
our conservation law as,
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Z
d2xðρx2 − 2ndÞ ¼ const: ð15Þ

In other words, the longitudinal motion of a dipole
(corresponding to a dislocation climb) requires the absorp-
tion or creation of vacancies or interstitial defects. This
provides a kinetic and energetic barrier, which, in the
absence of vacancies and interstitials, constrains disloca-
tions and the corresponding fracton dipoles into quasi-one-
dimensional particles, as expected.
To see more formally and explicitly that longitudinal

dipole motion (equivalently, dislocation motion transverse
to its Burgers vector, i.e., a climb) creates vacancy or
interstitial defects, we examine the Ampere equation of
motion, δH=δAij ¼ 0, which takes the form,

∂tEij þ 1

2
ðϵik∂kBj þ ϵjk∂kBiÞ ¼ −Jij: ð16Þ

The piece of this equation that is relevant for our purposes
is the trace, which can be written as [44]

∂tnd þ ∂iJid ¼ −Jii; ð17Þ

where Jid ¼ πi ¼ ϵjiBj is the current density of vacancies
and interstitials, and we have used the fact that Ei

i ≈ nd,
since ∂iũi ≪ 1. The above equation represents a continuity
equation for the vacancy or interstitial number, sourced
by a dislocation current transverse to the Burgers vector,
Jii ¼ ẑ · ðv × bÞ, indicating that dislocation climb creates
vacancy or interstitial defects [44].
Dual fracton superconductor.—The duality has mapped

a 2D crystal onto a rank-two gauge theory coupled to
fracton matter, with the dual gauge theory action Eq. (8)
naturally describing a fracton insulator. However, to access
finite density fracton phases, it is convenient to treat matter
more explicitly by tracing over the topological defect
currents ðρ; JijÞ, leading to [38]

S ¼
Z

d2xdt

�
1

2
C̃−1
ijklE

ij
σ Ekl

σ −
1

2
BiBi

−
1

2
g1ð∂i∂jθ − AijÞ2 þ

1

2
g0ð∂tθ − ϕÞ2

�
; ð18Þ

where θ is the phase of the fracton field and the gi are
determined by core energies of the defects. This action is
capable of describing a dual fracton “superconductor” (i.e.,
a condensate of fractons), with the normal phase (i.e., the
fracton insulator) corresponding to the crystal. This action
also supports a third phase between the fracton super-
conductor and insulator, as we discuss next.
Applications.—The field of fractons is still in the early

stages of development, and thus, it lacks much of the basic
machinery used in the study of symmetry breaking systems
and conventional topological phases. As such, much less is

known about the various phases and phase transitions of
fracton models (though recent progress has been made on
this subject) [13]. For the specific fracton model discussed
here, however, we can obtain the entire phase diagram and
characterize the nature of phase transitions by the above
mapping onto a two-dimensional crystal, which has been
studied in great detail [47–49]. The duality thereby gives
key features of phases and phase transitions of the above
scalar charge fracton model, which we expect to also
provide insight into more general fracton systems.
More specifically, in addition to the above established

correspondence between a crystal and gauged fracton
insulator, two fracton-proliferated phases emerge as duals
of the orientationally ordered (e.g., hexatic) and isotropic
fluids. On the elasticity side, these appear at finite temper-
ature as a result of two-stage BKT-like melting transitions:
(i) a crystal-to-hexatic fluid transition, at which dislocations
(that are logarithmically bound in a crystal) proliferate,
[47–49], followed by (ii) a hexatic-to-isotropic fluid BKT
transition [50–52], at which disclinations (bound quadrati-
cally in the crystal phase, but screened down to logarithmic
binding in the hexatic) entropically proliferate. We thus
predict a finite temperature fracton phase diagram with
three distinct phases, distinguished by the proliferation
of dipoles and fractons, as summarized in Fig. 2. The
proliferated phases can be regarded as a dipole condensate
and a fracton condensate, respectively, with implications
for the quantum theory of melting, discussed elsewhere
[38]. These transitions are all captured by the tensor dual
“superconductor”model, Eq. (18), that at finite temperature
reduces to a classical 2D tensor sine-Gordon model. We
leave the more detailed analysis of these fracton phases and
transitions on the gauge theory side to future research [38].
We also note that at zero temperature, two qualitatively

distinct quantum crystal phases are allowed. A “commen-
surate crystal” (with the weight of Bragg peaks commen-
surate with the number of particles) is characterized by
long-range positional and orientational orders and a vac-
uum of gapped vacancies and interstitials, i.e., a Mott
insulator. With increased quantum fluctuations (e.g.,
reduced mass), vacancies and interstitials condense at a
finite density into an “incommensurate crystal,” that is a
supersolid [53–55] in the case of bosonic atoms. The
fracton-elasticity duality thus predicts two distinct zero-

FIG. 2. The duality with elasticity theory predicts that the
fracton gauge theory exhibits two finite-temperature phase
transitions, corresponding to the unbinding of dipoles and
fractons, respectively.
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temperature fracton insulating phases on the tensor gauge
theory side, distinguished by gapped and condensed
quadrupole excitations.
We conclude by noting that fracton-elasticity duality

draws an intriguing connection to a seemingly unrelated
subject of classification of interacting crystal symmetry
protected topological insulators (TCIs) [56–66]. In classi-
fying interacting symmetry-protected topological (SPT)
phases, one particularly powerful tool is gauging the
symmetry protecting the SPT phase [67]. The result is a
topologically ordered state [68], described by a gauge
theory with a gauge group equivalent to the symmetry
group of the original SPT phase, with different interacting
SPT phases corresponding to distinct topological phases.
For internal symmetry groups, this gauging procedure is

fairly straightforward, done by coupling to a dynamical
flux of the symmetry group. However, for the case of
spatial symmetries, the notion of flux insertion is less clear.
As recently demonstrated [69], flux of a crystal symmetry
is equivalent to a lattice defect, with a dislocation and a
disclination respectively corresponding to a flux of trans-
lational and rotational symmetries. A resulting model with
a fully gauged crystalline symmetry exhibits dynamical
lattice defects; i.e., it is a quantum elasticity theory.
Fracton-elasticity duality then allows us to map the gauged
system onto a fracton theory. Hence, the result of gauging a
two-dimensional crystalline symmetry is a fracton phase, as
opposed to the more conventional topological phases
obtained by gauging an internal symmetry. We expect that
a more detailed understanding of fracton phases thus
obtained by gauging crystal symmetries may prove useful
for classifying interacting TCIs, a quest that is still being
actively pursued [70–76]. We leave the details of imple-
menting this program as a task for the future.
Conclusions.—In this Letter, we have explicitly demon-

strated a duality between two-dimensional quantum elas-
ticity and a fracton tensor gauge theory, in a natural tensor
generalization of conventional particle-vortex duality. The
topological defects of a 2D crystal map directly onto the
charges and dipoles of the gauge theory, while phonons and
an elastic strain tensor, respectively, correspond to the
gapless gauge modes and the tensor electric field. This
duality demystifies the constrained mobility of fractons and
dipoles by mapping them onto known properties of dis-
clinations and dislocations, respectively. As a result, we
made predictions about fracton phases and phase transi-
tions by mapping onto the phase diagram of quantum
crystals. Our work opens the door for the future exchange
of ideas between the emerging field of fractons and the
well-established study of elasticity theory.
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