
 

Properties of the Geometry of Solutions and Capacity of Multilayer Neural Networks
with Rectified Linear Unit Activations

Carlo Baldassi, Enrico M. Malatesta ,* and Riccardo Zecchina
Artificial Intelligence Lab, Institute for Data Science and Analytics, Bocconi University, Milano 20135, Italy

(Received 17 July 2019; published 23 October 2019)

Rectified linear units (ReLUs) have become the main model for the neural units in current deep learning
systems. This choice was originally suggested as a way to compensate for the so-called vanishing gradient
problem which can undercut stochastic gradient descent learning in networks composed of multiple layers.
Here we provide analytical results on the effects of ReLUs on the capacity and on the geometrical landscape
of the solution space in two-layer neural networks with either binary or real-valued weights. We study the
problem of storing an extensive number of random patterns and find that, quite unexpectedly, the capacity
of the network remains finite as the number of neurons in the hidden layer increases, at odds with the case
of threshold units in which the capacity diverges. Possibly more important, a large deviation approach
allows us to find that the geometrical landscape of the solution space has a peculiar structure: While the
majority of solutions are close in distance but still isolated, there exist rare regions of solutions which are
much more dense than the similar ones in the case of threshold units. These solutions are robust to
perturbations of the weights and can tolerate large perturbations of the inputs. The analytical results are
corroborated by numerical findings.
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Artificial neural networks (ANNs) have been studied for
decades and yet only recently have they started to reveal
their potentialities in performing different types of massive
learning tasks [1]. Their current denomination is deep
neural networks (DNNs) in reference to the choice of the
architectures, which typically involve multiple intercon-
nected layers of neuronal units. Learning in ANNs is in
principle a very difficult optimization problem, in which
“good” minima of the learning loss function in the high
dimensional space of the connection weights need to be
found. Luckily enough, DNN models have evolved rapidly,
overcoming some of the computational barriers that for
many years have limited their efficiency. Important com-
ponents of this evolution have been the availability of
computational power and the stockpiling of extremely rich
data sets.
The features on which the various modeling strategies

have intersected, besides the architectures, are the choice of
the loss functions, the transfer functions for the neural
units, and the regularization techniques. These improve-
ments have been found to help the convergence of the
learning processes, typically based on stochastic gradient
descent (SGD) [2], and to lead to solutions which can often
avoid overfitting even in overparametrized regimes. All
these results pose basic conceptual questions which need to
find a clear explanation in term of the optimization
landscape.
Here we study the effects that the choice of the rectified

linear units (ReLUs) for the neurons [3] has on the

geometrical structure of the learning landscape. The
ReLU is one of the most popular nonlinear activation
functions and it has been extensively used to train DNNs,
since it is known to dramatically reduce the training time
for a typical algorithm [4]. It is also known that another
major benefit of using the ReLU is that it is not as severely
affected by the vanishing gradient problem as other transfer
functions (e.g., tanh) [4,5]. We study ANNmodels with one
hidden layer storing random patterns, for which we derive
analytical results that are corroborated by numerical find-
ings. At variance with what happens in the case of threshold
units, we find that models built on ReLU functions present
a critical capacity, i.e., the maximum number of patterns per
weight which can be learned, that does not diverge as the
number of neurons in the hidden unit is increased. At the
same time we find that below the critical capacity they also
present wider dense regions of solutions. These regions are
defined in terms of the volume of the weights around a
minimizer which do not lead to an increase of the loss value
(e.g., number of errors) [6]. For discrete weights this notion
reduces to the so-called local entropy [7] of a minimizer.
We also check analytically and numerically the improve-
ment in the robustness of these solutions with respect to
both weight and input perturbations.
Together with the recent results on the existence of such

wide flat minima and on the effect of choosing particular
loss functions to drive the learning processes toward them
[8], our result contributes to create a unified framework for
the learning theory in DNN, which relies on the large
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deviations geometrical features of the accessible solutions
in the overparametrized regime.
The model.—We will consider a two-layer neural net-

work with N input units, K neurons in the hidden layer, and
one output. The mapping from the input to the hidden layer
is realized by K nonoverlapping perceptrons each having
N=K weights. Given p ¼ αN inputs ξμ labeled by index
μ ¼ f1;…; pg, the output of the network for each input μ is
computed as

σμout ¼ sgn

�
1ffiffiffiffi
K

p
XK
l¼1

clτ
μ
l

�
¼ sgn

�
1ffiffiffiffi
K

p
XK
l¼1

clgðλμl Þ
�
; ð1Þ

where λμl is the input of the l hidden unit, i.e., λμl ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðK=NÞp PN=K
i¼1 Wliξ

μ
li andWli is the weight connecting the

input unit i to the hidden unit l. cl is the weight connecting
hidden unit l with the output; g is a generic activation
function. In the following we will mainly consider two
particular choices of activation functions and of the weights
cl. In the first one we take the sign activation gðλÞ ¼ sgnðλÞ
and we fix to 1 all the weights cl (in general their sign can
be absorbed into the weights Wli). The K ¼ 1 version of
this model is the well-known perceptron and it has been
extensively studied since the 1980s by means of the replica
and cavity methods [9–11] used in spin glass theory [12].
The K > 1 case is known as the tree-committee machine
that has been studied in the 1990s [13,14]. In the second
model we will use the ReLU activation function that is
defined with gðλÞ ¼ max ð0; λÞ, and since the output of this
transfer function is always non-negative we will fix half of
the weights cl to þ1 and the remaining half to −1. Given a
training set composed by random i.i.d. patterns ξμ ∈
f−1; 1gN and labels σμ ∈ f−1; 1g and defining
Xξ;σðWÞ≡Q

μ θ½ðσμ=
ffiffiffiffi
K

p ÞPK
l¼1 clτ

μ
l �, the weights that

correctly classify the patterns are those for which
Xξ;σðWÞ ¼ 1. Their volume (or number) is therefore [9,10]

Z ¼
Z

dμðWÞXξ;σðWÞ; ð2Þ

where dμðWÞ is a measure over the weightsW. In this study
two constraints over the weights will be considered. The
spherical constraint where for every l ∈ f1;…; Kg, we
have

P
i W

2
li ¼ N=K, i.e., every subperceptron has weights

that live on the hypersphere of radius
ffiffiffiffiffiffiffiffiffiffi
N=K

p
. The second

constraint we will use is the binary one, where for every
l ∈ f1;…; Kg and i∈f1;…;N=Kg we have Wli∈f−1;1g.
We are interested in the large K limit for which we will be
able to compute analytically the capacity of the model for
different choices of transfer function, to study the typical
distances between absolute minima and to perform the
large deviation study giving the local volumes associated to
the wider flat minima.

Critical capacity.—We will analyze the problem in the
limit of a large number N of input units. The standard
scenario in this limit is that there is a sharp threshold αc
such that for α < αc the probability of finding a solution is
1 while for α > αc the volume of compatible weights is
empty. αc is therefore called critical capacity since it is the
maximum number of patterns per weight that one can store
in a neural network. The critical capacity of the mode, for a
generic choice of the transfer function, can be evaluated
computing the free entropy F ≡ ð1=NÞhlnZiξ;σ, where
h� � �iξ;σ denotes the average over the patterns, using the
replica method; one finds

F ¼ GS þ αGE: ð3Þ

GS is the entropic term, which represents the logarithm of
the volume at α ¼ 0, where there are no constraints induced
by the training set; this quantity is independent of K and it
is affected only by the binary or spherical nature of the
weights. GE is the energetic term and it represents the
logarithm of the fraction of solutions. Moreover it depends
on the order parameters qabl ≡ ðK=NÞPi W

a
liW

b
li which

represent the overlap between subperceptrons l of two
different replicas a and b of the machine. Using a replica-
symmetric (RS) ansatz, in which we assume qabl ¼ q for all
a, b, l, and in the large K limit, GE is

GE ¼
Z

Dz0 lnH

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ − Δ−1

Δ2 − Δ

s
z0

�
ð4Þ

where Dz≡ ðdz= ffiffiffiffiffiffi
2π

p Þe−z2=2 and HðxÞ≡ R∞
x Dz. This

expression is equivalent to that of the perceptron (i.e.,
K ¼ 1), the only difference being that the order parameters
are replaced by effective ones that depend on the general
activation function used in the machine [13]. In Eq. (4) we
have called these effective order parameters Δ−1, Δ, and
Δ2, see the Supplemental Material (SM) [15] for details,
and in the perceptron they are 0, q, and 1, respectively.
In the binary case the critical capacity is always smaller

than 1 and it is identified with the point where the RS free
entropy F vanishes. This condition requires

αc ¼
q̂
2
ð1 − qÞ − R

Du lnð2 cosh ð ffiffiffî
q

p
uÞÞR

Dz0 lnHð−
ffiffiffiffiffiffiffiffiffiffiffi
Δ−Δ−1
Δ2−Δ

q
z0Þ

ð5Þ

where q̂ is the conjugated parameter of q. q and q̂ are found
by solving their associated saddle point equations (details
in the SM [15]). Solving these equations one finds for the
ReLU case αc ¼ 0.9039ð9Þwhich is a smaller value than in
the sign activation function case, where one gets αc ¼
0.9469ð5Þ as shown in Ref. [13].
In the spherical case the situation is different since the

capacity is not bounded from above. Previous works [13,14]
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have shown, in the case of the sign activations, that the RS
estimate of the critical capacity diverges with the number of
neurons in the hidden layer as αc ≃ ð72K=πÞ1=2, violating
the Mitchison-Durbin bound [16]. The reason for this
discrepancy is due to the fact that the Gardner volume
disconnects before αc and therefore replica-symmetry
breaking (RSB) takes place. Indeed, the instability of the
RS solution occurs at a finite value αAT ≃ 2.988 at large K.
A subsequent work [17] based on multifractal techniques
derived the correct scaling of the capacity with K as αc ≃
ð16=πÞ ffiffiffiffiffiffiffiffiffi

lnK
p

, which saturates theMitchison-Durbin bound.
In the case of the ReLU functions the RS estimate of the

critical capacity is obtained simply performing the q → 1
limit, as for the perceptron. Quite surprisingly, if the
activation function is such that Δ2 − Δ ≃ δΔð1 − qÞ for
q → 1, with δΔ a finite proportionality term, the RS
estimate of the critical capacity is finite (analogously to
the case of the perceptron, where having exactly
Δ2 − Δ ¼ 1 − q) makes the capacity finite. Contrary to
the sign activation (where the effective parameters are such
that Δ2 − Δ ≃ δΔ

ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p
), the ReLU activation function

happens to belong to this class (with δΔ ¼ 1
2
). The RS

estimate of the critical capacity is therefore given by

αRSc ¼ 2δΔ
Δ2 − Δ−1

: ð6Þ

One correctly recovers αc ¼ 2 in the case of the perceptron
[9] whereas for the committee machine with ReLU acti-
vation one has αc ¼ 2½1 − ð1=πÞ�−1 ≃ 2.934. As for the
sign activation, one expects also for the ReLU activation
that the RS saddle point is unstable before αc. Indeed we
have computed the stability of the RS solution in the large
K limit and we found αAT ≃ 0.615 which is far smaller than
the corresponding value of the sign activation. This
suggests that strong RSB effects are at play.
We have therefore used a 1RSB ansatz to better estimate

the critical capacity in the ReLU case. This can be obtained
by taking the limits q1 → 1 for intrablock overlap and
m → 0 for the Parisi parameter. We found α1RSBc ≃ 2.92,
which is not too far from the RS result.
For the sake of brevity, we just mention that the results

on the nondivergent capacity with K generalize to other
monotone smooth functions such as the sigmoid.
Typical distances.—In order to get a quantitative under-

standing of the geometrical structure of the weight space,
we have also derived the so called Franz-Parisi entropy for
the committee machine with a generic transfer function.
This framework was originally introduced in Ref. [18] to
study the metastable states of mean-field spin glasses and
only recently it was used to study the landscape of the
solutions of the perceptron [19]. The basic idea is to sample
a solution W̃ from the equilibrium Boltzmann measure and
to study the entropy landscape around it. In the binary
setting, it turns out that the equilibrium solutions of the

learning problem are isolated; this means that, for any
positive value of α, one must flip an extensive number of
weights to go from an equilibrium solution to another one.
The Franz-Parisi entropy is defined as

F FPðSÞ ¼
1

N

�R
dμðW̃ÞXξ;σðW̃Þ lnN ξ;σðW̃; SÞR

dμðW̃ÞXξ;σðW̃Þ
�

ξ;σ

ð7Þ

where N ξ;σðW̃; SÞ ¼ R
dμðWÞXξ;σðWÞQK

l¼1 δ½Wl · W̃l −
ðN=KÞS� counts the number of solutions at a distance d ¼
ð1 − S=2Þ from a reference W̃. The distance constraint is
imposed by fixing the overlap between every subperceptron
of W and W̃ to ðS=KÞ. The quantity defined in Eq. (7) can
again be computed by the replica method. However, the
expression for K finite is quite difficult to analyze numeri-
cally since the energetic term contains 4K integrals. The
largeK limit is instead easier and, again, the only difference
with the perceptron expression is that the order parameters
are replaced with effective ones in the energetic term (see
SM [15] for details).
In Fig. 1 we plot the Franz-Parisi entropy F FP as a

function of the distance d ¼ ð1 − S=2Þ from a typical
reference solution W̃ for the committee machine with both
sign and ReLU activations. The numerical analysis shows
that, as in the case of the binary perceptron, also in the 2-
layer case solutions are also isolated since there is a
minimal distance d� below which the entropy becomes
negative. This minimal distance increases with the con-
straint density α. However at a given value of α, typical
solutions of the committee machine with ReLU activations
are less isolated than the ones of the sign counterpart. The
same framework applies to the case of spherical weights
where we find that the minimum distance between typical
solutions is smaller for the ReLU case.

FIG. 1. (Left panel) Typical solutions are isolated in 2 layer
neural networks with binary weights. We plot the Franz-Parisi
entropy F FP as a function of the distance from a typical reference
solution W̃ for the committee machine with ReLU activations
(red line) and sign activations (blue line) in the limit of a large
number of neurons in the hidden layer K. We have used α ¼ 0.6.
For both curves there is a value of the distance for which the
entropy becomes negative. This signals that typical solutions are
isolated. (Right panel) Franz-Parisi entropy as a function of
distance, normalized with respect to the unconstrained α ¼ 0
case, for spherical weights and for α ¼ 1.

PHYSICAL REVIEW LETTERS 123, 170602 (2019)

170602-3



Large deviation analysis.—The results of the previous
section show that the Franz-Parisi framework does not
capture the features of high local entropy regions. These
regions indeed exist since algorithms can be observed to
find solutions belonging to large connected clusters of
solutions. In order to study the properties of wide flat
minima or high local entropy regions one needs to
introduce a large deviation measure [7], which favors
configurations surrounded by an exponential number of
solutions at small distance. This amounts to studying a
system with y real replicas constrained to be at a distance d
from a reference configuration W̃. The high local entropy
region is found around d ≃ 0 in the limit of large y. As
shown in Ref. [8], an alternative approach can be obtained
by directly constraining the set of y replicas to be at a given
mutual distance d, that is

ZLDðd; yÞ ¼
Z Yy

a¼1

dμðWaÞ
Yy
a¼1

Xξ;σðWaÞ

×
Y
a<b
l

δ

�
Wa

l ·W
b
l −

Nð1 − 2dÞ
K

�
: ð8Þ

This last approach has the advantage of simplifying the
calculations, since it is related to the standard 1RSB
approach on the typical Gardner volume [20] given in
Eq. (2): the only difference is that the Parisi parameter m
and the intrablock overlap q1 are fixed as external param-
eters, and play the same role of y and 1 − 2d, respectively.
Therefore m is not limited anymore to the standard range
[0, 1]; indeed, the large m regime is the significant one
for capturing high local entropy regions. In the large m
and K limit the large deviation free entropy FLD ≡
ð1=NÞhlnZLDiξ;σ reads

FLDðq1Þ ¼ GSðq1Þ þ αGEðq1Þ ð9Þ

where, again, the entropic term has a different expression
depending on the constraint over the weightsW. Its expres-
sion, together with the corresponding energetic term, is
reported in the SM [15].
We report in Fig. 2 the numerical results for both binary

and spherical weights of the large deviation entropy
(normalized with respect to the unconstrained α ¼ 0 case)
as a function of q1. For both sign and ReLU activations, the
region q1 ≃ 1 is flat around zero. This means that there exist
W̃ references around which the landscape of solutions is
basically indistinguishable from the α ¼ 0 case where all
configurations are solutions. We also find that the ReLU
curve, in the vicinity of q1 ≃ 1, is always more entropic
than the corresponding one of the sign. This picture is valid
for sufficiently low values of α; for α greater of a certain
value α� the two curves switch. This is due to the fact that
the two models have completely different critical capacities

(divergent in the sign case, finite in the ReLU case) so that
one expects that clusters of solutions disappear at a smaller
constrained capacity when ReLU activations are used.
Stability distribution and robustness.—To corroborate

our previous results, we have also computed (details in the
SM [15]), for various models and types of solutionsW, the
distribution of the stabilities Ξ ¼ hðσ= ffiffiffiffi

K
p ÞPK

l¼1 clτ
μ
l iξ;σ,

which measure the distance from the threshold at the output
unit in the direction of the correct label σ, cf. Eq. (1).
Previous calculations [21] have shown that in the simple
case of the spherical perceptron at the critical capacity the
stability distribution around a typical solutionW develops a
delta peak in the origin Ξ ≃ 0; we confirmed that even in the
two-layer case the stability distribution of a typical sol-
ution, being isolated, also has its mode at Ξ ≃ 0 even at
lower α, see the dashed lines in Fig. 3 (left). A solution
surrounded by an exponential number of other solutions,
instead, should be more robust and be centered away from
0. Our calculations show that this is indeed the case both for
the sign and for the ReLU activations, and we have
confirmed the results by numerical simulations. In Fig. 3
(left) we show the analytical and numerical results for the

FIG. 2. Numerical evidence of the greater robustness of the
minima of ReLU transfer function (red line) compared with the
sign one (blue line) using the large deviation analysis in
the binary (left panel) setting and spherical setting (right panel).
The exchange in the curves in both settings for sufficiently large α
is due to the fact that the algorithmic threshold of the ReLU is
reached before than the corresponding one of the sign case.

FIG. 3. (Left panel) Dashed lines: Theoretical stability curves
for the typical solutions, for binary weights at α ¼ 0.4. Solid
lines: Comparison between the numerical and theoretical stability
distributions in the large deviation scenario, same α. We have
used q1 ¼ 0.85, y ¼ 20. (Right panel) Robustness of the refer-
ence configuration found by replicated simulated annealing when
one pattern is perturbed by flipping a certain fraction η of entries.
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case of binary weights at α ¼ 0.4 with y ¼ 20 replicas at
q1 ¼ 0.85. For the numerical results, we have used simu-
lated annealing on a system with K ¼ 32 (K ¼ 33) for the
ReLU (sign) activations (respectively), and N ¼ K2 ≃ 103.
We have simulated a system of y interacting replicas that is
able to sample from the local-entropic measure [6] with
the RRR Monte Carlo method [22], ensuring that the
annealing process was sufficiently slow such that at the end
of the simulation all replicas were solutions, and control-
ling the interaction such that the average overlap between
replicas was equal to q1 within a tolerance of 0.01. The
results were averaged over 20 samples. As seen in Fig. 3
(left), the agreement with the analytical computations is
remarkable, despite the small values of N=K and K and
the approximations introduced by sampling with simulated
annealing.
The stabilities for the sign and ReLU activations are

qualitatively similar, but quantitatively we observe that in
all cases the curves for the ReLU case have a peak closer to
0 and a smaller variance. These are not, however, directly
comparable, and it is difficult to tell from the stability
curves alone which choice is more robust. We have thus
directly measured, on the results of the simulations, the
effect of introducing noise in the input patterns. For each
trained group of y replicas, we used the configuration of the
reference W̃ (which lays in the middle of the cluster of
solutions) and we measured the probability that a pattern of
the training set would be misclassified if perturbed by
flipping a fraction η of randomly chosen entries. We
explored a wide range of values of the noise η and sampled
50 perturbations per pattern. The results are shown in
Fig. 3 (right), and they confirm that the networks with
ReLU activations are more robust than those with sign
activations for this α, in agreement with the results of Fig. 2.
We also verified that the reference configuration is indeed
more robust than the individual replicas. The results for
other choices of the parameters are qualitatively identical.
Our preliminary tests show that the same phenomenology is
maintained when the network architecture is changed to a
fully-connected scheme, in which each hidden unit is
connected to all of the input units.
The architecture of the model that we have analyzed here

is certainly very simplified compared to state-of-the-art
deep neural networks used in applications. Investigating
deeper models would certainly be of great interest, but
extremely challenging with current analytical techniques,
and is thus an open problem. Extending our analysis to
a one-hidden-layer fully-connected model, on the other
hand, would in principle be feasible (the additional com-
plication comes from the permutation symmetry of the
hidden layer). However, based on the existing literature
(e.g., Refs. [13,23]), and our preliminary numerical experi-
ments mentioned above, we do not expect that such an
extension would result in qualitatively different outcomes
compared to our treelike model.

C. B. and R. Z. acknowledge the ONR Grant
No. N00014-17-1-2569.
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