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This Letter exposes a tight connection between the thermodynamic efficiency of information processing
and predictive inference. A generalized lower bound on dissipation is derived for partially observable
information engines which are allowed to use temperature differences. It is shown that the retention
of irrelevant information limits efficiency. A data representation method is derived from optimizing a
fundamental physical limit to information processing: minimizing the lower bound on dissipation leads to a
compression method that maximally retains relevant, predictive, information. In that sense, predictive
inference emerges as the strategy that least precludes energy efficiency.
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Effective and meaningful processing of information is
crucial for the operation of “Maxwell’s demon,” a thought
experiment in which a sentient being operates a trap door in
a split gas container to sort fast from slow molecules,
attempting to defy the second law of thermodynamics [1].
The thermodynamic cost of the demon’s operation offsets
any gains [2], ensuring that the second law is not violated.
Details of this process have been discussed for over a
hundred years [3], but recently, interest in understanding
the thermodynamics of information processing has spiked
with the increasing ability to control biomolecular
machines, and the advent of nanotechnology [4–20].
Ninety years ago, a simple and elegant thought experi-

ment was proposed by Léo Szilárd [21] to illuminate the
concept behind Maxwell’s demon without having to dis-
cuss any detailed physiology of a sentient being. Szilárd
considered a one-particle gas in a container with a movable
wall in the middle. Knowing which side is empty allows for
work extraction by isothermal expansion. Highly influen-
tial to this day (e.g., Refs. [22–28]), Szilárd’s simple
information engine forms a basis for understanding the
conversion between information and work, and fundamen-
tal thermodynamic limits to computation.
Importantly, only information about certain aspects of a

system at hand can enable work extraction. What these
aspects are is determined by the physics of any given setup.
An observer has to make choices about what to measure,
what part of the observable data to store in memory, and to
which precision. The knowledge so acquired is then used
to act. Interactive observers are often called “agents” in
machine learning and robotics. Szilárd assumed all agent
choices to be optimal, and all relevant degrees of freedom to
be observable. These assumptions reverberate in the ensu-
ing literature, limiting the discussion largely to the special
case in which all of the captured information can, in
principle, be turned into work [29].

But in many real-world scenarios encountered by agents,
biological and artificial alike, not all degrees of freedom
of an observed system are accessible, thus fundamentally
limiting agents to act on partial knowledge. In the most
general case, systems are only partially observable, and the
agent has to make inferences to predict relevant quantities
from available data. This predictive inference constitutes a
core function of intelligent behavior. Relative costs and
benefits of more or less complicated memories have to be
weighed against each other. Intuitively, smarter choices
should result in fewer losses, but how precisely should a
general strategy be designed? Can it be derived from a
physical principle?
This Letter reveals that performing predictive inference

by discarding irrelevant information is a strategy that not
only enables energy efficiency, but also emerges naturally
from minimizing a lower bound on dissipation—
demonstrating that an intelligent data representation strat-
egy can be derived from the optimization of a fundamental
physical limit to information processing.
Information engines.—A variety of models use informa-

tion to extract work from a heat bath. This information
either is acquired and memorized [21], or it is supplied
from the outside, whereby the costs of running a memory
can be ignored, and bits can be viewed as fuel [8]. We
follow Szilárd’s lead, including the cost of information
acquisition and decision-making in the engine’s energy bill.
We generalize to partial observability and allow the use of
temperature differences. A lower bound on dissipation
encountered by generalized information engines is given
in Eq. (13), together with a Szilárd-Carnot cycle that
saturates the bound.
An information engine contains the following. (1) A

(partially) observable system, with microstate denoted by
the random variable Z with realizations z ∈ Z. (2) An
agent, implemented via another physical system (artificial
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or biological) that turns measurements into a stable
memory, denoted by the random variable M with realiza-
tions m ∈ M. The memory is used to decide on a work
extraction protocol. (3) A work extraction device that
enables the agent to couple useful energy out of the system.
This device is given by the physical setup, and determines
which aspects of the system are relevant with respect to
extracting work.
An information engine runs cyclicly. A measurement is

performed at time ti0, and written into memory (i denotes
the ith cycle; depending on context, superscripts can be
dropped). This process is implemented by a protocol that
changes external control parameters on the memory
between ti0 and ti1. The protocol is a function of the
observable data. During this process, the engine is con-
nected to a heat bath at temperature T. An average amount
of workWM is done on the memory, and an average amount
of heat, −QM, is dissipated (the convention is used that
energy flows into a system are positive). The memory
remains unchanged until ti3.
Work extraction starts at time ti2, and ends at ti3: a

protocol is chosen as a function of the memory state and
applied to the system. As a result, heat, in the average
amount of QE, is absorbed from a heat bath at temperature
T 0, whereby an average amount of work, −WE, is extracted.
This is implemented using whichever work extraction
device is given—in Szilárd’s example it is the movable
partition, combined with pulleys and weights [21]. The
work extraction protocol is designed such that the memory
has no exploitable correlations with the system after ti3.
The system is then prepared for the next cycle between

times ti3 and tiþ1
0 . This preparation step is always the same

procedure, and hence independent of the memory state—in
Szilárd’s example the partition gets reinserted into the
middle of the box. Typically, it is assumed not to require
work. At the start of the new cycle, the old memory state
contains no correlations with the new state of the system,
and is not used in the new cycle. The protocol by which the
memory is set to a new state depends only on the
observable data in the new cycle.
To calculate the engine’s free energy changes during

steps of this cycle, we consider the generalized free energy
[30–35], Ft ¼ hEtðm; zÞiptðm;zÞ − kTHt, where ptðm; zÞ
denotes the joint distribution, over system states, z, and
memory states, m, at time t, Etðm; zÞ the energy, and
Ht ¼ −hln½ptðm; zÞ�iptðm;zÞ the Shannon entropy. (The
shorthand pðxÞ≡ pðX ¼ xÞ is used [36], and h⋅ipðxÞ is
the average overpðxÞ.) Changes occur due tomanipulationof
the memory, ΔFM ≡ Ft1 − Ft0 , and due to work extraction,
ΔFE ≡ Ft3 − Ft2 . The associated free energy differences,

ΔFA ¼ WA þQA − kTΔHA; A ∈ fM;Eg; ð1Þ
contain an average change in energy, ΔEA ¼ WA þQA,
which is the sum of the average work and heat, according

to the first law of thermodynamics, and they contain entropy
changes, ΔHM≡Ht1 −Ht0 and ΔHE ≡Ht3 −Ht2 . To cal-
culate those, it is useful to introduce the following notation:
(1) Decomposition: The system’s microstate will be

decomposed in two different ways, first, into observable
components, X, versus nonobservable components, X̄:
Z ¼ ðX; X̄Þ. However, what can be observed is not neces-
sarily the same as what can be manipulated. Denote by Y all
components with the properties: (i) they can be manipu-
lated between t2 and t3, and (ii) they are predictable from t0
to t2 (the mutual information is nonzero). These are the
components relevant for work extraction. Z can also be
decomposed into those, versus all other components, Ȳ:
Z ¼ ðY; ȲÞ.
(2) Manipulation: The system cannot be manipulated in a

way that changes anything but Y. Thus,

pt2ðȳjy;mÞ ¼ pt3ðȳjy;mÞ≡ pðȳjy;mÞ: ð2Þ
(3) Data representation: The stochastic map from observ-

able data, x, to memory states, m, is independent of x̄:

pt1ðmjzÞ ¼ pt1ðmjx; x̄Þ ¼ pt1ðmjxÞ≡ pðmjxÞ: ð3Þ
(4) Marginal distributions: All changes performed on the

system do not change the marginal distribution at times tk
(k ¼ 1;…; 4): ptkðzÞ≡ pðzÞ, and therefore, ptkðyÞ ¼P

ȳ ptkðy; ȳÞ≡ pðyÞ and ptkðxÞ≡ pðxÞ. The preparation
step simply introduces a hidden variable v, such that
pt0ðyÞ ¼

P
v pðyjvÞpðvÞ. If v is discovered, then the

system appears in a nonequilibrium state best described
by pðyjvÞ, which can be exploited during work extraction.
The marginal probability of the memory derives only

from the statistical average of measurement outcomes.
Therefore, ptkðmÞ ¼ P

x pðmjxÞpðxÞ≡ pðmÞ.
(5) Inference: Knowledge carried in memory about the

relevant quantity Y derives from the statistical average over
measurement outcomes:

pt2ðyjmÞ ¼
X

x

pðyjxÞpðmjxÞpðxÞ≡ pðyjmÞ: ð4Þ

Here we used that if the measurement outcome itself is
given, then the memory adds no information about the
relevant quantity, i.e., pðyjm; xÞ ¼ pðyjxÞ. The dynamics
of the system determine pðyjxÞ.
Thermodynamic cost of memory.—At t0, system and

memory are uncorrelated and the joint distribution
factorizes: pt0ðm; zÞ ¼ pt0ðmÞpt0ðzÞ ¼ pðmÞpðzÞ. After
the memory is constructed,

pt1ðm; zÞ ¼ pt1ðmjx; x̄Þpt1ðzÞ ¼ pðmjxÞpðzÞ. ð5Þ
The entropy thus decreases by ΔHM ¼ H½MjX� −H½M� ¼
−I½M;X�, the amount of mutual information captured
in memory about the observable data. This process happens
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at temperature T and the free energy change associated
with it, Eq. (1), is ΔFM ¼ WM þQM þ kTI½M;X�. The
second law implies that WM − ΔFM ≥ 0, and hence

−QM ≥ kTI½M;X�: ð6Þ
Operating a memory requires at a minimum dissipation
proportional to the amount of information retained. This is
a known fact (e.g., Refs. [11,37,38] and references therein).
Thermodynamic gain derivable from a memory.—At the

beginning of work extraction, the joint distribution, written
with the decomposition Z ¼ ðY; ȲÞ, is

pt2ðm; zÞ ¼ pt2ðȳjy;mÞpt2ðyjmÞpt2ðmÞ
¼ pðȳjy;mÞpðyjmÞpðmÞ: ð7Þ

At the end of work extraction, all correlations between Y
and M are gone, and we have

pt3ðm; zÞ ¼ pt3ðȳjy;mÞpt3ðyÞpt3ðmÞ
¼ pðȳjy;mÞpðyÞpðmÞ: ð8Þ

The entropy of the joint system thus increases by
ΔHE ¼ H½Y� −H½YjM� ¼ I½M;Y�. During this process,
the engine is connected to a bath at temperature T 0. The
free energy change is ΔFE ¼ WE þQE − kT 0I½M;Y�, and
the second law implies that WE − ΔFE ≥ 0. Therefore,

QE ≤ kT 0I½M;Y�: ð9Þ

The amount of heat that can get absorbed and turned into
work is limited by how much information is retained about
the variable(s) relevant with respect to work extraction.
If the relevant quantities are fully observable, then all of

the energetic cost of running the memory can in principle
be recovered. But, in general, information captured in
memory, Imem ≡ I½M;X�, may contain only some bits
which are predictive of the relevant quantity, that is,
Irel ≡ I½M;Y�, relevant, or predictive, information. The
rest is irrelevant information, Iirrel ≡ Imem − Irel ≥ 0,
which is non-negative, as pðyjm; xÞ ¼ pðyjxÞ implies
I½M;X� − I½M;Y� ¼ I½M;XjY� ≥ 0. We thus see that
QE ≤ kT 0I½M;Y� ≤ kT 0I½M;X�; which means that inequal-
ity (9) is more restrictive than the known ultimate bound,
QE ≤ kT 0I½M;X� (e.g., Refs. [11,39,40] and references
therein), which can be reached only in the special case
where relevant quantities are fully observable.
Lower bound on dissipation.—Over a cycle, an iso-

thermal information engine (connected to a heat bath at
temperature T throughout) dissipates an average amount of
heat −Q ¼ −QM −QE. From Eqs. (6) and (9), substituting
T 0 ¼ T, we see that the irrelevant information retained in
memory sets a lower limit on dissipation:

−Q ≥ kTIirrel ≥ 0: ð10Þ

Example.—We recall Szilárd’s Gedankenexperiment
[21] to build on it: one particle is trapped in a rectangular
container with volume V. Let us look at the container from
above, and insert a movable partition in the middle, at
y ¼ 0, parallel to the x axis. Knowing the sign of the
particle’s y position allows us to extract, on average, work
up to kT lnð2Þ. But if we limit an agent to only observe the x
position of the particle, then no work can be extracted,
because we cannot infer from the x position alone which
half of the container is empty.
Correlations can be introduced by making some areas

inaccessible to the particle (Fig. 1, very dark grey). Here,
the shape of the excluded areas is chosen to make it easy for
the reader to calculate I½X; Y� [41]. The lighter grey, and
white areas in Fig. 1 signify that coarse graining along the x
axis, which corresponds to possible memory states. We
distinguish between two (left), or three (right) different
states.
To extract work, we infer if the particle is in the upper or

lower half, using the memory state m, via the inference
pðyjmÞ. The wall is then moved to the half that is empty
with higher probability. This will result in compression,
rather than expansion, with probability qðmÞ. Therefore,
we have to leave a fractional volume, ρðmÞV, unused.
Given m, we extract, on average, kT 0ð½1 − qðmÞ�
ln ½V − ρðmÞV=ðV=2Þ� þ qðmÞ ln ½ρðmÞV=ðV=2Þ�Þ. This
is maximized by choosing ρðmÞ ¼ qðmÞ, resulting in a
total average extracted work of

−WE ¼ kT 0 X

m

pðmÞðlnð2Þ þ ½1 − qðmÞ� ln ½1 − qðmÞ�

þ qðmÞ ln ½qðmÞ�Þ ð11Þ
¼ kT 0ðH½Y� −H½YjM�Þ ¼ kT 0I½M;Y�. ð12Þ

FIG. 1. Sketch of a partially observable Szilárd engine, run
isothermally with a two-state memory (left panel), or with a three-
state memory (right panel) using a temperature difference.
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Because this isothermal transformation leaves the average
energy of the one-particle gas unchanged, it saturates the
bound in Eq. (9), as −WE ¼ QE ¼ kT 0I½M;Y�.
The particle’s x position at the time of measurement

contains information about the particle’s y position at the
time when work extraction begins, in the amount of
I½X; Y� ¼ 2

3
lnð2Þ. This information can be captured by

memorizing in which third of the box along the x axis
the particle was found (Fig. 1, right panel, upper right
drawing, lighter grey and white areas). On average, this costs
at least kT lnð3Þ, and allows us to extract at most 2

3
kT lnð2Þ,

because 2
3
of the time we know for sure which side is empty

(grey or white area in the drawing), otherwise (light grey area
in the drawing) we can not extract any work.
If the temperature is fixed, then the dissipation encoun-

tered with a three-state memory is at least kTðlnð3Þ−
2 lnð2Þ=3Þ ≃ 0.64 kT, cf. Eq. (10). Less dissipation can
be encountered with a two-state memory, costing at least
kT lnð2Þ, and capturing I½M;Y� ¼ 5

6
lnð5Þ − lnð3Þ, all of

which can be converted to work if 1=6 of the total volume is
left unused, e.g., by moving the wall between �l in Fig. 1
(far left panels). This results in an average dissipative loss
of at least kT½lnð6Þ − 5 lnð5Þ=6�≃ 0.45kT.
While the more detailed three-state memory allows us to

extract more work than the less detailed two-state memory,
the relative benefit does not outweigh the relative increase
in cost.
Access to two temperatures.—The situation changes

if we allow the engine to form a memory at temperature
T, but extract work at a higher temperature T 0. Whether it is
advantageous to use a two-state or a three-state memory
now depends on the temperature ratio α≡ T 0=T > 1.
The added gain of the three-state memory outweighs
the additional cost when α > α� ¼ ½lnð3Þ − lnð2Þ�=½lnð3Þþ
2 lnð2Þ=3 − 5 lnð5Þ=6� ≃ 1.847.
While an isothermally run information engine can, at

best, recover the energy needed to run the memory, an
engine that has access to two different temperatures can
produce non-negative work output. The engine needs to be
heated from T to T 0 between ti1 and ti2, and cooled from T 0

to T between ti3 and tiþ1
0 . We consider “memory preserv-

ing” temperature changes that do not destroy the correla-
tions between memory and system. No additional degrees
of freedom get unlocked at the higher temperature, and
heating and cooling steps taken together cannot result in a
net influx of heat, so that the total heat dissipated on
average over a cycle is −Q ≥ −QM −QE. The bound in
Eq. (10) is thus generalized (with Eqs. (6) and (9)):

−Q ≥ kðTImem − T 0IrelÞ: ð13Þ

Below, we give a protocol, akin to a Carnot process, that
saturates the bound.
Finding a thermodynamically efficient information

processing strategy.—The bound in Eq. (13) directly

informs an optimal way to represent available data.
Recall that the observer’s strategy is characterized by the
stochastic map pðmjxÞ. This map determines not only the
amount of memory retained, but also how much relevant
information is captured. We can now find the best strategy
as that which allows for the smallest possible dissipation,
by minimizing the bound in Eq. (13). Mathematically, the
optimization is equivalent to

min
pðmjxÞ

ðI½M;X� − αI½M;Y�Þ ð14Þ
subject to∶

X

m

pðmjxÞ; ∀ x: ð15Þ

The added constraints simply ensure normalization of the
stochastic map pðmjxÞ. This optimization problem is a
lossy data compression method called the Information
Bottleneck method [42]. It is a fairly general, information
theoretic, predictive inference method, containing within it
other methods as special cases (for a review see, e.g.,
Ref. [43]). The temperature ratio α determines the relative
importance of the added benefits of a more detailed data
representation, as we have seen in the example. It can also
be interpreted as a Lagrange multiplier that controls the
trade-off between a concise summary and keeping relevant
information [42].
A protocol to change between temperatures.—A gener-

alized Szilárd information engine can be run in a process
akin to the Carnot process. The data representation step is the
same as before, an isothermal transformation at temperature
T. This can be implemented with ΔEM ¼ 0, implying
that WM ¼ −QM ¼ kTImem.
A memory dependent work extraction protocol is then

chosen (see right side of Fig. 1), consisting of the following
steps: (1) isolate the one-particle gas box from the heat
bath and perform an isentropic (reversible and adiabatic)
compression of the entire box from volume V to V 0, raising
the temperature to T 0; (2) connect to a heat bath at T 0, and
extract work isothermally by moving into the most prob-
ably empty direction, leaving an optimized fractional
volume; (3) isolate the box and perform an isentropic
expansion from V 0 to V, lowering the temperature back to
T, and (4) remove the partition and re-insert in the middle.
Thework done in the isentropic steps one and three cancels,
and overall this protocol turns the maximally possible
amount of heat into work, QE ¼ −WE ¼ kT 0Irel. In the
isentropic steps, V=V 0 ¼ ðT 0=TÞd=2, with d degrees of
freedom. The right panel of Fig. 1 illustrates
T 0=T > α� ≃ 1.847, thus making the sketched three-state
memory more efficient than the two-state memory [The
container is treated as two-dimensional (thus d ¼ 2) to
improve visibility of the smaller boxes].
Engine efficiency.—This process saturates the lower

bound on dissipation, Eq. (13). It produces net work
in the amount of −WE−WM¼kðT 0Irel−TImemÞ, and
absorbs heat at the higher temperature in the amount of
QE ¼ kT 0Irel. Thus, it has an efficiency of
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η ¼ 1 −
T
T 0

Imem

Irel
¼ ηC −

T
T 0

Iirrel
Irel

: ð16Þ

The Carnot efficiency, ηC ¼ 1 − ðT=T 0Þ, is reduced in
proportion to the ratio of irrelevant to relevant information.
Efficiency in regular heat engines is non-negative.

Information engines encounter a loss in the memory
making process that can outweigh any thermodynamic
gain of having the memory, and efficiency is non-negative
only when the fraction of relevant bits retained in memory
is larger than the fraction of low to high temperature:
Irel=Imem ≥ T=T0.
The better an information engine is at solving the

predictive inference task by memorizing relevant bits
and eliminating irrelevant bits, the more efficient it can be.
Discussion.—We have seen that it is possible to derive

a rather general data representation strategy from optimiza-
tion of a fundamental physical limit to information process-
ing. This approach can be pursued in a broader context.
Thermodynamic efficiency arguments apply, for in-

stance, to the Boltzmann machine [44], another staple
machine learning algorithm. Input patterns drive this neural
network out of its parameter dependent equilibrium state,
qθ, to a nonequilibrium state, p. The associated additional
free energy, Fadd ¼ kTD½pkqθ� [30–35] (D denotes the
Kullback-Leibler divergence), is dissipated during the
relaxation process involved in predicting labels on
new patterns. Those parameters θ are found that minimize
D½pkqθ� [44], thereby minimizing a lower bound on the
average dissipation encountered during prediction.
Besides energy efficiency, other important physical limits

to information processing include speed, accuracy, and
robustness, as well as fundamental trade-offs between them
(e.g., Ref. [45]). One can ask which information processing
strategies emerge when those limits are optimized. It is also
interesting to see how this extends to quantum systems
(such as treated in, e.g., Refs. [25,40,46–52]), and to
investigate the consequences of considering single-shot
quantities (see, e.g., Refs. [53,54] and references therein).
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