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FIG. 2. Best fit to the coupling constants gz and g&
of the assumed y octet. The new resonant wave with
unknown isospin is tried as a triplet of SU(2) and

marked F*.

according to Eq. (7), the predicted partial widths
of the predicted, getting

r(=-'- =-~) —5 Me V,

F(='- &K) -27 MeV,

I'(:"'-:"ri)-0.4 MeV,

F(:"'-AK)-0.2 MeV.
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In theories with spontaneously broken local symmetries, renormalizability sometimes
forces the scalar field interactions to have a larger group of symmetries than the gauge
field interactions. Symmetries can then arise in zeroth order which are violated by fi-
nite higher-order effects, thus providing a possible natural explanation of the approxi-
mate symmetries observed in nature. Such theories contain spinless bosons which be-
have like Goldstone bosons, but which pick up a small mass from higher-order effects.

Renormalizable field theories with spontaneous-

ly broken local symmetries were suggested' as a
framework for unifying the electromagnetic and

weak interactions and for solving the divergence
difficulties of the weak interactions. It is becom-

ing increasingly apparent" that such theories
can also provide a solution to one other of the
long-outstanding problems of particle physics,
the existence of approximate symmetries such as
isospin conservation.
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The new opportunity for understanding this old
problem arises from the circumstance that a
Lagrangian which is renormalizable, is invariant
under a local symmetry group Q, and contains a
deflnlte set of fields tx'ansfol ming according to
prescribed representations of Q, is often so con-
strained by these conditions that in zeroth order,
after spontaneous symmetry breaking, the mass-
es and other physical parameters are found to
obey certain symmetry relations, which are not
merely consequences of some unbroken subgroup
of Q, but which nevertheless remain valid for all
values' of the parameters in the Lagrangian. In
this case corrections generally appear in high
ox'dex', but QO Doxie 8ckoss to f88 88% Otk-of d8%

symmetry relations must be finite, because the
theory is renormalizable, and there are no coun™
terterms available to absorb a divergence, should
one occur.

In a previous Letter' I discussed one class of
zeroth-order fermion mass relations, those aris-
ing from limitations on the representation con-
tent of the scalar fields coupled to the fermions.
Since then, I have tried without success to find
models of this type which could explain such ap-
proximate symmetries as electron chirality and
hadronic SU(3) @SU(3). Meanwhile, Georgi and
Glashow' described a few examples of theories in
which zeroth-order mass relations arise from
constraints on the zeroth-order vacuum expecta-
tion values of the scalax fields, rather than sole-
ly from their representation content. It was not
clear, however, whether this was an exceptional
or a widespread phenomenon, or whether it could
be put to use in constructing models of the real
world.

In this note I will describe a broad class of
quite natural theories in which the vacuum expec-
tation values of the scalar fields are subject to
certain constraints, not merely corresponding to
unbroken subgroups of the underlying symmetry
group Q, for all values' of the parameters in the
Lagrangian. These theories necessarily contain
a new kind of particle, a spinless meson which
behaves like a Goldstone boson, but has a small
mass, and is not eliminated by the Higgs mecha-
nism. I suggest that the pion and its relatives
may be just such 'pseudo-Goldstone" bosons.

The spontaneous breakdown of a symmetry
group 6 is in general manifested in the appear-
ance of nonzero vacuum expectation values of a
multiplet (perhaps reducible) of Hermitian spin-
0 fields «p, . The zeroth-order vacuum expecta-
tion value A,. of q,. is determined by the condition

that the G-invariant polynomial -P(y) appearing
in the Lagrangian be stationary at p= A.:

BP(y)/By, .=0 at y=A, .

In general, we would not expect the solutions of
Eq. (I}to exhibit any particular symmetry, ex-
cept that A. might be invariant undex some unbro-
ken subgroup 8 of 6," in which case no higher-
order corrections could arise. There are, how-
ever, theories in which constraints on A. arise
because G invariance requires P(y) (but not the
rest of the Lagrangian) to be invariant under a
larger group of pseudosymmetries Q.

To see how this is possible, note that every 5-
invariant polynomial in q may be expressed' as
a polynomial function of certain "typical basic
polynomials" in y. For some y representations,
the table of typical basic invariants for |"is the
same as for a larger group G, in which case gay
polynomial in p, invariant under G, is also in-
variant under G. This is the case' for the seven-
dimensional representation of the exceptional
Lie group G, ; the only invariant is the "length"
y&y;, so any 62-invariant function of p is also
invariant under the larger group O(7). More of-
ten, the existence of pseudosymmetries depends
upon the renormalizability requirement, that
P(y) must be at most quartic If enough .of the
typical basic invariants are of higher than fourth
order in y, and are thereby excluded from P(y),
then we may find that the ones remaining are all
invariant under some larger group G. For in-
stance, consider the adjoint representation of
U{3), furnished by Hermitian traceless 3&3 ma-
trices C. If we adjoin to U(3) a reflection R:4- —4, then the typical basic invariants are Tr42
and Det4 . However, Det4 is of sixth order in
4, and cannot appear in a quartic polynomial.
Hence, every quartic polynomial in 4 which is
invariant under G = U(3) SR must be a function
of Tr4 alone, and thexefore must be invariant'
under the larger group G = SO(8).

When P(y} is invariant under a pseudosymme-
try group 6, it is natux'al to find solutions of
Eq. (I) for which A. is invariant under any given
subgroup 5 of G, for all values4 of the parame-
ters in the Lagrangian. In particular, P(y) does
not know that the whole Lagrangian is only invari-
ant under G, not G, so there is no reason why 8
must be contained within G. Those transforma-
tions that are in both C and $ are the only true
unbroken symmetries in the theory; presumably
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these are restricted to electromagnetic gauge
transformations in the real world. On the other
hand, those transformations that are in 5 but not
in Q are symmetries of the zeroth-order vacuum
expectation values but not of the whole theory,
and therefore may account for the approximate
symmetries observed in nature.

The breaking of the pseudosymmetry group 6
down to F gives rise to a spinless boson with
vanishing zeroth-order mass for every indepen-
dent generator of G not in S. Those bosons corre-
sponding to generators of the true symmetry
group G are true Goldstone bosons, and are elim-
inated by the Higgs mechanism. ' However, there
will also be a boson for each independent genera-
tor of G which is not in G or $; these are mass-
less in zeroth order, but since they do not corre-
spond to true symmetries of the whole Lagran-
gian, they pick up a finite mass from higher-or-
der effects. These are the pseudo-Goldstone
bo sons.

For instance, in the U(3) 8 example discussed
above, the only possible symmetry-breaking so-
lution of Eq. (1) must have A, invariant under an
SO(7) subgroup 8 of G. In this case the true sym-
metry group formed by the overlap between G

and S can be either U(1) ISU(1) SU(1) or U(2)
NIU(1), leaving either 21 —3=18 or 21 —5=16
"approximate" symmetry generators belonging
to 8 but not G. There are 28 —21=7 generators
of V not in S, to which correspond seven bosons
with vanishing zeroth-order mass. Of these,
either 9 —3 = 6 or 9 —5 = 4 are true Goldstone bo-
sons, and are removed by the Higgs mechanism, '
leaving behind either 7 —6 = I or 7 —4 = 3 pseudo-
Goldstone bosons.

Even when X is constrained by some subgroup
P of a group of pseudosymmetries G, this does
not immediately lead to a constraint on the fermi-
on masses unless the Yukawa interaction is also
invariant under G. Indeed, for every solution X

of Eq. (1) there are an infinity of other solutions
A. obtained by acting on ~ with any transforma-
tion g in 6. The A. for g in Q are physically
equivalent, but the others are not, and in order
to determine which A. is the physical solution it
is necessary to take higher-order corrections in-
to account. ' When the Yukawa interaction is Q

invariant these complications have no effect on
the zeroth-order fermion mass relations, though

they do affect the mass splittings.
There is in fact a large class of pseudosymme-

tries which naturally leave the Yukawa interac-
tions invariant. These arise from a phenomenon

I would like to call the unlocking of representa-
tions. Suppose the boson field multiplet y,. may
be decomposed into two separate multiplets y,
and g~, transforming under the representations
D„and D „(perhaps themselves reducible) of G.
In general, the table of "typical basic invariant"
polynomials includes some involving both y and

g, which are invariant under simultaneous t"
trans formations on both y and g, but not under
G'transformations on y or q separately. It some-
times happens that all of these invariants, which
lock the transformations of X and g together,
are higher than fourth order in the boson fields,
and so are excluded from P(y). In this case D„
and D „become unlocked, and the polynomial
P(y) becomes necessarily invariant under a
pseudosymmetry group 6= G„N|Q„, consisting of
independent transformations on y and g. If all of
the scalar fields which are allowed by Ginvari-
ance to have Yukawa couplings are contained in
one of the scalar multiplets, say y, then the Yu-
kawa interactions will be invariant under both Q „
and (trivially) G „, and the zeroth-order fermion
mass matrix will therefore exhibit invariance un-
der any subgroup S of t which leaves A. invariant.
But the gauge couplings are only t" invariant, not
6 invariant, and so any symmetry in p which is
not in G will be broken by higher-order weak and
electromagnetic effects, which also give a mass
to the pseudo-Goldstone bosons.

As an example of unlocking, consider an SU(4)
SU(4} model, in which the left- and right-hand-
ed parts of a quark quartet form the representa-
tions (4, 1) and (1, 4). Let X be a complex (4, 4*)
boson multiplet, which is strongly coupled to the
quarks and itself, and consequently has a rather
small vacuum expectation value, of the order of
the quark masses. Let q be a single real (20, 1)
@(1, 20) multiplet, which cannot couple to the
quarks, and has a large vacuum expectation val-
ue, of the order of 300 GeV. Unlocking occurs
because the products y *yb and X yb contain only
the representations (15, 15), (15, 1), (1, 15),
(1, 1), (6, 6), and (10,10*), while the symmetric
products g ~g, contain only the representations
(20, 20}, (20, 1), (84, 1), (175, 1), (1, 20), (1, 84),
(1, 175}, and (1, 1); the only representation in
common is (1, 1}, so any invariant formed from

a ~b ~k~l ~a~b ~I ~& must be the product of an
invariant function of X times an invariant func-
tion of g. It will therefore be natural to find solu-
tions of Eq. (1) such that Xx breaks SU(4) SU(4)
down, say, to U(3), while X" breaks SU(4) SU(4)
all the way down to electromagnetic gauge in-
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variance. " With A. x «A. ", the vector-meson
mass matrix is dominated by A" terms, and weak
and electromagnetic effects can produce finite
corrections to U(3} invariance. The true Gold-
stone bosons are linear combinations of y and g
fields, but are nearly pure g, and so the Higgs
mechanism has only a small effect on the y prop. -
agators. The pseudo-Goldstone bosons here are
essentially just those y fields corresponding to
symmetries broken by A", i.e., to a pseudoscalar
octet, triplet, and singlet and a scalar triplet.
It remains to be seen whether such models have
anything to do with reality, but at least they open
up the possibility of an integration of current
algebras, including soft-pion theorems, with the
new picture of weak and electromagnetic interac-
tions.

Inspection of the one-loop contributions to the
fermion mass matrix shows explicitly that can-
celations eliminate the divergences in correc-
tions to all types of zeroth-order mass relations,
including those discussed here as well as those
discussed in Refs. 2 and 3. This and other mat-
ters will be discussed in detail in a more com-
prehensive article on approximate symmetries
now in preparation.

I am grateful for discussions with S. Coleman,
H. Georgi, S. L. Glashow, R. Herman, R. Jackiw,
B.Kostant, B.W. Lee, F. E. Low, and V. F.
%eisskopf.
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