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Statistical mechanics is applied to estimate the maximal information capacity per synapse (a, ) of a

multilayered feedforward neural network, functioning as a parity rnachine. For a large number of hid-

den units, K, the replica-symmetric solution overestimates dramatically the capacity, a, 0:K . Ho~ever,
a one-step replica-symmetry breaking gives a, -lnK/ln2, which coincides with a theoretical upper
bound. It is suggested that this asymptotic behavior is exact. Results for finite K are also discussed.

PACS numbers: 87.10.+e, 05.50.+q, 64.60.Cn

Analogies between networks of formal neurons and
random magnetic spin systems have suggested the use of
statistical mechanics in the study of properties of neural
networks. ' Among these systems, perceptron networks

play a central role. The prototype of this class of archi-
tectures is the one-layered perceptron, consisting of one
input layer of N binary units and one binary output unit.
Gardner, in her pioneering work, has demonstrated that
a statistical-mechanics approach can be helpful for
studying properties of this simplest perceptron. She was
able to rederive the already known result of the informa-
tion maximal capacity, introducing a general frame-
work allowing a systematic study of this kind of sys-
tem. This approach has been recently applied to study
various properties of the one-layer perceptron.

However, as is well known, the computational power
of such a one-layer network is limited, since it cannot
solve nonseparable problems. Furthermore, having in

mind applications to biological systems, multilayer net-
works may play an important role. Hence, quantitative
estimation of the capability of multilayer architectures is

very interesting. In particular, it is interesting to know
how much larger the information capacity per synapse
(i.e., per weight) is in multilayer systems compared with

the one-layer perceptron.
The problem of multilayered networks has been ad-

dressed by Baum and Mitchison and Durbin, where
bounds for the information capacity were obtained using
geometrical methods. In this work, a two-layer feedfor-
ward network is studied using the statistical-mechanics
approach. The architecture of the network consists of %
binary input units, one hidden layer with K continuous
units (because of the particular internal representation
of the studied problem, see below, the results are in-

dependent of the exact nature of the hidden units, i.e. ,
continuous or discrete) and a single binary output unit.
The input units are divided into K disjoint sets, each one
of them consisting of N/K units. The Ith hidden unit is

connected only to the ith input via the ~eight J, such
that N(l —

1 )/K (i (Nl/K Therefore, each one of the.

input units is connected only to one hidden unit; i.e., the
receptive fields of the hidden units are nonoverlapping

K

o =sgn + h(I-i (2)

This network is known as a parity machine, since the
output is the parity of the internal representation of the
hidden units for a given set of weights and a state of the
input layer. (Strictly speaking, this architecture is a
two-layered network only where the output unit is a X,-H

unit. )
As in the study of the one-layer perceptron, the task of

the network is a mapping of a random input on a random
output. More precisely, the p th pat tern consists of
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FIG. 1. The architecture of a parity machine with nonover-

lapping receptive fields with N input units and K hidden units.

(see Fig. 1).
The configuration of the input is denoted by js;I,

i =1, . . . , % with s, = + 1. The state of the lth hidden
unit is equal to its induced local field

JVl /K

h( = g J;s, =J( s(,
N(l —1)/K+ ]

where J( and s( are vectors of rank N/K. The output
unit 0 of the network is just the sign of the product of the
K hidden units
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g,
"= +' 1 with equal probability, where i =1, . . . , N and

p =1, . . . , P. The desired output of the pth pattern is
y" =+ 1 with equal probability. The question is to cal-
culate, as a function of K, the maximal number of pat-
terns P, that can be taught to the network in the limit

It is also important to understand the statistical
nature of the solutions in the phase space of the weights.
For the case K =1, the network is exactly the perceptron
problem and P, =2N.

Following Gardner's method, the problem is formulat-
ed in the statistical framework as follows. For a given
realization of the P patterns, the normalized fractional
volume in the weight space occupied by the networks
which achieve the desired output is given by

gdJ, +a(~t. ~t N/K)-ge 'y gS, g,
"'.

i 1 I p, I

(3)
In the computation one concentrates on ln V which in the

qt'~ =(K/N) Jt' J$, (4)

where ~qt'~~ & 1. The physical meaning of qt'P is the
overlap between the weights belonging to the Ith hidden
unit in two replicas, a and P. Note that because the re-
ceptive fields of two diA'erent hidden units are nonover-

lapping, there is a priori only one type of order parame-
ter. The case of a fully connected parity machine, where
a priori lnV depends on more than one type of order pa-
rameter, was recently investigated by Mezard and Patar-
nello' within the replica-symmetric (RS) ansatz.

Under the RS assumption, qt'P=(1 —q)8,ti+q (q is
independent of I, since after the average over the disor-
der, all the hidden units are equivalent), one can show
that

thermodynamic limit is an extensive quantity. This
quantity is averaged over the quenched distribution of
the random input and output patterns, Igf, y"], using the
replica method. In the calculations one introduces a set
of order parameters

((lnV)) =extlql ~ —. ln(1 —q)+ +a
2(1 —q)

f+ oo

QDt 1 T l„=,l gH(Q t )e4 —oo ( I I
(5)

where a =P/N, Q = [q/(1 —q)] ', Dt =e ' dtl
(2tr) ', H(x) =j „Dx, and q is determined by the
saddle-point (SP) equation. For each number of hidden
units, K, one can distinguish between four regimes of a:
(a) The region 0 & a & ao is characterized by q =0. For
the cases K=2, 3, and 4, ao=tr /8, 6.5, and —12, re-
spectively. (b) For K =2 the system undergoes a
second-order phase transition at ao, where near ao,
q-4/tr (a —ao). For K& 2 the transition at ao is a
first-order phase transition. At the transition for K=3
and 4, numerical solutions of the SP equation give
q=0.51 and 0.85, respectively. (c) For ao & a & a„q
increases with a up to the maximal capacity a, where

q =1. Quantitatively, the critical capacity is fixed by the
following equation:

a, '(K) = Dyy'. (6)

For the case K=2, a, =5.5 and for large K, a,. txK .
(d) The RS solution is locally stable for K =2 up to ao,
whereas for K & 2 the RS solution is stable up to a, .
The details of the derivation of these results and the full
dependence of a as a function of K and q will be given
elsewhere. '

Result (a) is remarkable, since in general it is expect-
ed that as a increases correlations are built among
diAerent solutions. This is indeed the case of the one-
layer perceptron, where q is positive for any finite a.
Ho~ever, the parity-machine network is diA'erent from
the one-layer perceptron in two aspects. The first
difference is that each pattern has 2 ' legal internal
representations of the hidden units, which gives 2
legal internal representations for all the patterns. The

second diA'erence is that the state of the output unit is in-
variant under 2 ' global symmetries. Each global
symmetry consists of the transformation JI —JI for
an even number of hidden units. Note that the freedom
in the choice of the internal representation is common to
all multilayered networks. However, the discussed
global symmetries characterize especially the parity-
machine network. Hence, for small a the fractional
volume of the solution is enlarged, in comparison to a
simple perceptron, by the free choice of the internal rep-
resentation. For a & ao the different solutions in the
weight space are connected, including regions related to
each other by global symmetries, which leads to the ex-
istence of a paramagnetic phase with q =0. For large
enough a, a & ao, the ergodicity is broken and a transi-
tion to a spin-glass phase occurs.

For K & 3 the system undergoes a first-order phase
transition which can be understood by the symmetry of
the cost function [see Eq. (3)]. This quantity can be ex-
pressed in the form

IIe y"
P

~here J,, is a ~eight connected to the Ith hidden unit.
For K & 3 the symmetry of the discussed system reminds
one of the symmetry of Hamiltonian systems with multi-
spin (soft) interactions where a first-order transition is
found. '

The replica-symmetric prediction that a, a- K for
large K is certainly wrong, since an upper bound of lnK/
ln2 for a, is obtained by a straightforward generalization
of the method used by Mitchison and Durbin to our
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nonoverlapping architecture. The failure to give an estimate for the maximal capacity compatible with this upper
bound is due to a strong replica-symmetry-breaking (RSB) eA'ect. In the following, the solution within a one-step RSB
is discussed.

The one-step RSB solution is defined by three order parameters, m, qo, and ql. For 0 & x & m, q(x) =qo and for
m & x ( 1, q(x) =q 1. The averaged In V/N in this framework is given by

2A 2m 2m m "—
where hq =qi —

qo, 3 =1 —ql+mhq, and in general (f(X)) is defined by

qo

1 —qi

h,q
1

e Hrt

The three order parameters are determined by the three
SP equations with respect to qo, q 1, and m.

One first examines the properties of the solution to
these three equations near the transition to the RSB
phase for the cases K=2 and 3 and then the critical
capacity will be studied as a function of K.

In the case of K =2, the RS solution is unstable for
a) ao=n /8 and a transition to the RSB phase is ex-
pected. A perturbative expansion of SP equations
around ao gives the result that the system undergoes a
second-order phase transition to a RSB phase which bi-

furcates continuously from the RS solution. This phase
is characterized by q0=0, and the first terms of the ex-
pansion of q i and m in the vicinity of ao are

q|=4/n (a —ao)+16/3n (72/n —1)(a —ao)

and m =4/n (1+16/n )(a —ao). Note that ql dilfers
from the RS solution only at the second order in a —ao.
As a increases above ao, the numerical solutions of the
three SP equations indicate that qo =0 (which is always
a solution), qi increases to 1, and m increases up to some
maximal value and then decreases to zero. The behavior
of m is similar to the one-step RSB solution of Ising spin

glass. "
In the case of K =3, the transition to the RSB phase

L

occurs at a~sq=3. 2, whereas the RS solution with q~0
appears above a0=6. 15. At the transition one can find

numerically that m =1 and q]=0.93, where q0=0 is a
solution for any a. This transition is first order in the
sense that ql is discontinuous, but the averaged ln V (free
energy) is continuous at aRsa, since fq(x)dx ~ a
—aRqB. A similar behavior was found at the transition
to the glassy low-temperature phase of Potts glass sys-
tems' and spin glasses with multispin interactions. ' '
As was explained above, the symmetry of the examined
systems is similar to those systems and such a discon-
tinuous transition is expected. Since the RS solution is
stable around aRsq, the preferred phase is the one which
minimizes ln V. The comparison between these two
phases was carried out and indeed gives the result that
the preferred phase above aRsq is the one-step solution.
As a increases above aRsa, q0=0, ql 1, and m de-
creases to zero. The full curves of m and q] as a func-
tion of a and K will be given elsewhere.

Let us concentrate now on the limit a a„where
ql 1, m 0, and m/(1 —qi)=—c, where c is of O(1).
This scaling of m and 1

—qi is found in various spin-
glass systems and was confirmed numerically in our
problem for the cases K =2 and 3 by solving numerically
the SP equations near a, . The averaged lnV in this limit
is given by

1 d((lnV)) = min(m/c)+In(1+c) —2aln2+2aln 1+2K e ' '- "+"'[2H(t)]~
2m (9)

The extremum of this equation with respect to c and m gives, for K =2 and 3, a, =4.06 and 5, respectively (correspond-
ing to c=14.3 and 67.2). The result of the critical capacity for K up to 50 is given in Fig. 2, which indicates that for
large K, a, scales with lnK. It is remarkable that this one-step calculation is compatible with the bound of Ref. 8.

In the large-K limit (but K/N 0), Eq. (9) gives

((ln V)) = [m ln(m/c)+ln(1+c) —2a ln2+2aln(1+K/Jc )]1

2m (10)

and indeed one can obtain that in the leading order the critical capacity for large K is given by

a, (K ~) =InK/ln2,

whereas c=(KlnK/ln2) .
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FIG. 2. The maximal capacity per synapse as a function of
InK/In2.

This result coincides with the upper bound for a, one
can obtain by a generalization of the geometric method
used in Ref. 8. An important question is whether the
one-step solution is exact in this limit or whether it is

just a good approximation, where the exact a, is less

than InKlln2. The stability analysis of the one-step solu-

tion is not necessarily a good criterion, since the transi-
tion as a function of a is in some sense a first-order tran-
sition. Hence, the procedure to calculate the exact value
of a, is to minimize ((lnV/N)) in the general framework
of Parisi's solution, where a, is fixed for each parametri-
zation. This goal certainly deserves further research.
Nevertheless, we think that Eq. (11) is an exact result
for the following reasons. At the transition to the RSB
phase, the state in each one of the valleys is almost
frozen even for finite K, since q~ =0.93 for K=3. It is

expected that the self-overlap ql is an increasing func-
tion of K, and in the large-K limit, ql 1. Furthermore,
some similarities between this problem in the large-K
limit and the random-energy model and the simplest spin

glass ' ' suggest that the one-step solution is exact.
Finally, it is reasonable to think that for the fully con-
nected parity machine the capacity per synapse is also
given by (11) and that the SP solution has only one non-

zero order parameter, q ~.

Simulations in the case K=2 and with N up to 1000
were carried out using the least-action algorithm, ~here
the results were averaged over at least fifty samples. It
was found that t,„'a:a, for a) 1.5, where t,. „

is the

average convergence time. This scaling of convergence
time was also obtained for the perceptron case. A
finite-size analysis of a„where t„diverges, suggested

that a, =3.2. It was also found that the algorithm is

inefficient to learn more than one-half of the samples at
the value —3.2. The diA'erence between this result and
the one-step solution where a, =4 could be a conse-
quence of the fact that the exact form of the order pa-
rameter is a more structured function than a one step.
Another source of this discrepancy is the fact that the
measured a, is the maximal capacity of this particular
algorithm.

The existence of the paramagnetic phase and the na-
ture of the transition to the spin-glass phase have been
confirmed in preliminary simulations for K=2 and 3.
The more structured RSB phase is currently under
analytical investigation.
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