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Integrability and Quantum Chaos in Spin Glass Shards
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We study spin glass clusters (“shards”) in a random transverse magnetic field, and determine
the regime where quantum chaos and random matrix level statistics emerge from the integrable
limits of weak and strong fields. Relations with quantum phase transition are also discussed.
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Quantum manifestations of classical chaos and integranvestigate their properties [10]. Such important problems
bility have been intensively investigated in the past decadas zero temperature quantum phase transition, structure of
[1]. It has been realized that the statistical properties ofthe phase diagram, correlations, and susceptibility prop-
the quantum energy spectrum are strongly influenced bgrties have been intensively investigated both analytically
the underlying classical dynamics. Indeed, classical inand numerically [11-16]. However, to the best of our
tegrability generally implies the absence of level repul-knowledge, the level spacing statistics has not been stud-
sion and a Poissonian statistics of energy level spacingged in disordered spin systems. Here we present theoreti-
On the contrary, chaotic dynamics leads to level repulsiorcal estimates for spin glass “shards” which determine the
with the level spacing statistid®(s) being the same as in crossover from integrability to quantum chaos in a way
the random matrix theory (RMT), i.e., the Wigner-Dyson analogous to the case of finite interacting fermionic sys-
(WD) distribution [2]. These two distributions a?(s)  tems. Numerical investigations df(s) statistics give a
also characterize, respectively, the localized and metallipowerful test of this crossover both at high temperature
phases in the Anderson model of disordered systems. At and at7 = 0 where a quantum phase transition is be-
the critical point between these two phases an intermedlieved to take place.
ate level spacing statistics occurs [3]. The spin glass shards we study are described by the

While for one-particle systems the statistical propertiedHamiltonian,
of spectra are well understood, the same problem in many-
body systems has been addressed only recently. The first H=Y Jjolol + > Tiof, (1)
results demonstrated that many-body integrable systems i<j i
are still characterized by Poisson statistigds), whereas where theo; are the Pauli matrices for the spin and
in the absence of integrals of motion the Wigner-Dysonthe first sum runs over all spin pairs. The local random
statisticsPwp(s) has been found [4]. More recently, in- magnetic field is represented By uniformly distributed
vestigations of finite Fermi systems such as the Ce atorim the interval[0,I']. The exchange interactions; are
[5] and the?®Si nucleus [6] put forward the question of the distributed in the same way ip—J//n,J//n], where
statistical description and thermalization induced by inter# is the total number of spins. Fdf = 0, this system
action. A quantum chaos criterion for emergence of RMTis the classical Sherrington-Kirkpatrick spin glass model
statistics and dynamical thermalization induced by inter{9]. The ./n factor in the definition ofJ;; ensures
action was established in Ref. [7]. Namely, a crossoven proper thermodynamic limit at — . In the limit
from Poisson statistics to the WD distribution takes place//I" — 0, one obtains a paramagnetic phase with all spins
when the coupling matrix elements become comparablen the field direction. The opposite limit/{T" — )
to the level spacing between directly coupled states. Fororresponds to a spin glass phase at low temperature [9].
two-body interaction, the critical interaction strength be- Let us first discuss the properties of the model for
comes exponentially larger than the multiparticle levelhighly excited states near the center of the energy band.
spacing. Indeed, the latter decreases exponentially witht J = 0, the system is integrable, since there aran-
the number of particles, while the former decreases typitegrals of motion, andP(s) should follow the Poisson
cally only quadratically. This result was corroborated indistribution. WhenJ/T" increases, we expect integra-
Ref. [8], and should apply to various physical systems suchility to be destroyed and therefore a crossover towards
as complex nuclei, atoms, clusters, and quantum dots. Pwp(s) statistics typical of RMT should take place. At

In this Letter, we develop and apply these concepts td” = 0, the model again becomes integrable since there
disordered spin systems. These systems are of great eare n operators ¢;) commuting with the Hamiltonian;
perimental and theoretical interest [9]; in particular, quan-hence P(s) = Pp(s). The latter may seem surprising, es-
tum spin glasses have recently attracted a great deal pkcially in light of recent discussions on chaos in classical
attention, and various approaches have been developeddpin glass [17]. However, in spite of a possible complex
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thermodynamic behavior (Monte Carlo dynamics), thethe statistics remains Poissoniam € 1) at arbitrary
Hamiltonian dynamics of a classical spin glass is inte-//T", as is shown in Fig. 2. The critical poidt/T" = 1
grable. As a result, we expect another crossover from fl1] does not manifest itself. Indeed, this= 1 model
WD statistics back to a Poissonian one for lathd’.  can be mapped into a model of noninteracting fermions
This picture is confirmed by the numerical results for(see, e.g., [11]). Therefore the total energy is the sum
P(s) displayed in Fig. 1. Thes®(s) distributions were of one-particle energies that generically leadsPie(s).
obtained for the states of the same symmetry cldsy ( As a result, RMT can never be applied to this model
namely, the number of spins up is always an even numand dynamical (interaction induced) thermalization never
ber (the interaction does not mix states with even and odthkes place. Thermalization can appear only through
numbers of spins up). We will call the other symmetrya coupling to a thermal bath that was implicitly used
class with an odd numbers of spins 8ip in Refs. [16,18]. On the contrary, in the system (1)
To analyze the evolution of the’(s) distributions there are two transitions from integrability to chaos
with respect toJ, it is convenient to use the parameter which determine two critical couplingd.,, from the
n = [y [P(s) — Pwp(s)lds/ [y [Pr(s) — Pwp(s)]lds,  paramagnetic side, and. from the spin glass side
where sy = 0.4729... is the intersection point oPp(s) [n(Jes) = n(Uep) = 0.3; Jes > Jopl.
and Pwp(s) [7]. In this way n = 1 corresponds to the In analogy with finite interacting fermionic systems [7],
Poissonian case, angd = 0 to the WD distribution. The we expect that quantum chaos sets in when the coupling
data of Fig. 1 show that the distributions with the samestrengthU becomes comparable to the spacing between
value of n are very close, even iff/T" varies more directly coupled stated\. (U ~ A.). For smallJ in
than 10 times. It is convenient to determine a criticalthe middle of the spectrum, one hds ~ J/./n and
coupling strength/. at which the crossover fro®p(s)  A. ~ 16I'/n? since each state is coupleditn — 1)/2
to Pwp(s) takes place by the condition(/./T") = 0.3.  states in an energy band 8f". This gives the quantum
The variation ofn with respect taJ is shown in Fig. 2 chaos border from the paramagnetic side:
for differentn. The global behavior of; is in agreement
with the above pi iti i ili Jep = Cpl' /", ()
picture of transition between integrability P /

and quantum chaos. Indeed, wheiil" increases,n  whereC, is some numerical constant. We note thatis

drops to zero and then starts to grow again back to ongxponentially larger than the multiparticle spacitg ~

when the spin glass term in (1) dominates. The fact thaj,["/2". For large/, the transitions between unperturbed

a WD statistics sets in is not trivial. Indeed, in dimensionstates at > I' are determined by thE term in (1), and

d = 1{the model (1) with nearest-neighbor coupling only have typical valud". The number of such transitions, in

andJ;;+1 drawn randomly from0, /], studied in [10,1%] 3 typical energy interval, is n; hence, A, ~ J/n. This
gives the quantum chaos border from the spin glass side:
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FIG. 1. Crossover from Poisson to WD statistics in the model 0.0 0 10 2‘0 JJcp 30
(1) for the states in the middle of the energy bandlZ.5%
around the center) fat = 12: J = 0, n = 0.984 (+); J/T = FIG. 2. Dependence ofy on the rescaled coupling strength

Jp/T' =038, n =03 (X); J/I' =0866, n =0.027 (*); J/J., for the states in the middle of the energy bandfo= 7
J/T =Js/T =615 =03 (O); I' =0, n =0.99 (O). V), 8 ), 9 (O), 10 (©), 11 (+), 12 €), 13 (X), 14 (1),
Full curves show the Poisson and WD distributions. Totaland symmetrys,; NS varies between 12500 and 160000. The
statistics {VS) is more than3 X 10* s is in units of mean full line for n = 12 shows the global behavior. Data for the
level spacing. Inset shows(s) for the first excitation from the d = 1 model (see text) are given far = 12 (@) as a function
ground state in the chaotic regime for= 15, J/T" = 0.465, of J/T (upper scale)NS = 30000. The inset magnifies the
10 = 0.018 (NS = 3000) (X); the full line showsPwp(s). region neat//J., = 1.
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Jes = CsI'n, 3) The global behavior ofpy and n; as a function of
J =1J/(J + TI') is shown in Fig. 4. This parametrization
naturally represents the two integrable limits= 0 and

= 0 in a symmetric way. In both extreme casds=
%; 1), mo and n; approach the Poissonian value 1. In
between there is a pronounced minimum wity = 0
and n; = 0.1. When the number of spins in the shard
increases, the values @f to the right from the minimum
go up markedly, whereas the minimal value itself
changes only weakly. Thesgdata suggest the existence
of a crossing point aroundl = J, = 0.5I". ForJ < J,,
the difference between curves for differemtis small,
whereas it is much bigger for > J,. The data in Fig. 3

where, again(; is some constant.

These theoretical predictions are confirmed by th
numerical results presented in Figs. 2 and 3 which giv
C, = 16 andC, = 0.5. We attribute the deviation from
(2) in Fig. 3 seen for smalk to the fact that for these
values J., is rather large; this can slightly modify the
unperturbed spectrum and the estimates Aor Also,
for small n the proximity of the second transition &t
can affect the actual value df,. The data shown in the
inset of Fig. 2 indicate thayy depends only on the ratio
J/Jep; the global scaling behavior is less visible than in

the fermionic model [7], apparently due to the reasong, o\ the variation O, Jes (for which 7, — 0.3) with

above. n; the behavior of/. is consistent withJ., — J, for

The analysis at the band center corresponds to a very' " ¢ . powh symmetry classes. Also, according to
high energy or temperature. Therefore the properties Qi oco datar. o 71— with 0 = a = 02. This value of
cp =a =02

gle)pgreaatl;I)t/heT%r?jl:)nShaStta\S\?e?:\%gﬁgztheodlsj;dfo?ihiﬁgd a is smqller than the one _expected from the quantum
excitations.fromE withi’n the same symmetry class. For chaos criterion, used to derive (2). Indeed, for _srﬂa_ll
the classS;, the éistributionP(s) was computed for. the near the ground statk, ~ I'/n whereas the coupling is

I P still J//n, and therefore one expeats= 0.5. For large

first f°!” level s_pacings Stf?‘”"?g from, by_ averag_ing_ n, this would imply thatn drops quickly to zero with/
over different disorder realizations. The first excnatlonand then increases again after the crossing pajnt In

itnhder't?hﬁe\éalxgrémgs\évgstoanaelzéffteseo%aeraéﬁIﬁ/]uml(;the such a scenario, in the thermodynamic limit-£ ) we
with an n noted byn; [19] gThere are several physical expectJep — 0 and Jes = Jg, S0 that » ch_anges fr_om
reasons for this sepalratior{' in the presence of a gajs zero (] < Jy) to one ¢ - Jq) With some _mte_rmedlate
related to the gap fluctuations while, characterizes the statistics at the critical point,. The determination of the
o L X 7 value at that point fom — o requires larger system
quasiparticle excitations of higher energy, above the Y8Wsizes. We expect that this critical point corresponds to

in a metallic guantum dot with noninteractin_g_ electrons,the guantum phase transition between paramagnetic and
o reflects the chaotic character of the dot giving = 0 spin glass phases discussed in Refs. [10,12,15] for a case
while the spectrum of higher excitations becomes close tQ . ' = T'. The above scenario is similar to the
. . ] .
Pp(s) with m; ~ 1. situation for the Anderson transition id = 3 [3]: as
for the Anderson insulator, the lack of space ergodicity

1.0 ‘ ‘ ‘ ‘ in the spin glass phase implies = 1. In this phase
o /
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FIG. 3. Critical coupling strength J. as a func- ~
tion of n: J, at band center for symmetrys, (@), FIG. 4. Dependence ofjo onJ =J/(J + I'): n =7 (@),
and near the ground statel( S;; €. S,); Js at n=9(Q),n=11 (+),n =13 (X), n =15 (A), n =17
band center forS, (0), and near the ground state (¢), n = 19 (OJ); 2000 = NS = 30000. Full curves connect
(@: Sy; o1 Sp). Full lines show the theory [Egs. (2) and data forn = 7,17. Inset showsn; in the region nead /I’ =
(8)] for the band center; the dashed line indicates the quantun,/I" = 0.5 in more detail;6000 = NS = 90000. Data are
critical point at7 = 0, J/I" = 0.5. Logarithms are decimal.  for §; symmetry.
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0 4 8 12 3EF 16 towards thg WD value. Larger system sizes are required
0.8 ‘ : ‘ to clarify this issue.
n We thank F. Mila and E. Sgrensen for stimulating
discussions.
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