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We study spin glass clusters (“shards”) in a random transverse magnetic field, and determine
the regime where quantum chaos and random matrix level statistics emerge from the integrable
limits of weak and strong fields. Relations with quantum phase transition are also discussed.
[S0031-9007(98)07880-6]
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Quantum manifestations of classical chaos and integ
bility have been intensively investigated in the past deca
[1]. It has been realized that the statistical properties
the quantum energy spectrum are strongly influenced
the underlying classical dynamics. Indeed, classical i
tegrability generally implies the absence of level repu
sion and a Poissonian statistics of energy level spacin
On the contrary, chaotic dynamics leads to level repulsio
with the level spacing statisticsPssd being the same as in
the random matrix theory (RMT), i.e., the Wigner-Dyson
(WD) distribution [2]. These two distributions ofPssd
also characterize, respectively, the localized and metal
phases in the Anderson model of disordered systems.
the critical point between these two phases an interme
ate level spacing statistics occurs [3].

While for one-particle systems the statistical propertie
of spectra are well understood, the same problem in man
body systems has been addressed only recently. The fi
results demonstrated that many-body integrable syste
are still characterized by Poisson statisticsPPssd, whereas
in the absence of integrals of motion the Wigner-Dyso
statisticsPWDssd has been found [4]. More recently, in-
vestigations of finite Fermi systems such as the Ce ato
[5] and the28Si nucleus [6] put forward the question of the
statistical description and thermalization induced by inte
action. A quantum chaos criterion for emergence of RM
statistics and dynamical thermalization induced by inte
action was established in Ref. [7]. Namely, a crossov
from Poisson statistics to the WD distribution takes plac
when the coupling matrix elements become comparab
to the level spacing between directly coupled states. F
two-body interaction, the critical interaction strength be
comes exponentially larger than the multiparticle leve
spacing. Indeed, the latter decreases exponentially w
the number of particles, while the former decreases typ
cally only quadratically. This result was corroborated i
Ref. [8], and should apply to various physical systems su
as complex nuclei, atoms, clusters, and quantum dots.

In this Letter, we develop and apply these concepts
disordered spin systems. These systems are of great
perimental and theoretical interest [9]; in particular, quan
tum spin glasses have recently attracted a great deal
attention, and various approaches have been develope
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investigate their properties [10]. Such important problem
as zero temperature quantum phase transition, structure
the phase diagram, correlations, and susceptibility pro
erties have been intensively investigated both analytica
and numerically [11–16]. However, to the best of ou
knowledge, the level spacing statistics has not been stu
ied in disordered spin systems. Here we present theore
cal estimates for spin glass “shards” which determine th
crossover from integrability to quantum chaos in a wa
analogous to the case of finite interacting fermionic sy
tems. Numerical investigations ofPssd statistics give a
powerful test of this crossover both at high temperatu
T and atT ­ 0 where a quantum phase transition is be
lieved to take place.

The spin glass shards we study are described by t
Hamiltonian,

H ­
X
i,j

Jijsx
i sx

j 1
X

i

Gis
z
i , (1)

where thesi are the Pauli matrices for the spini, and
the first sum runs over all spin pairs. The local random
magnetic field is represented byGi uniformly distributed
in the intervalf0, Gg. The exchange interactionsJij are
distributed in the same way inf2Jy

p
n, Jy

p
n g, where

n is the total number of spins. ForG ­ 0, this system
is the classical Sherrington-Kirkpatrick spin glass mod
[9]. The

p
n factor in the definition ofJij ensures

a proper thermodynamic limit atn ! `. In the limit
JyG ! 0, one obtains a paramagnetic phase with all spin
in the field direction. The opposite limit (JyG ! `)
corresponds to a spin glass phase at low temperature [9

Let us first discuss the properties of the model fo
highly excited states near the center of the energy ban
At J ­ 0, the system is integrable, since there aren in-
tegrals of motion, andPssd should follow the Poisson
distribution. WhenJyG increases, we expect integra-
bility to be destroyed and therefore a crossover towar
PWDssd statistics typical of RMT should take place. At
G ­ 0, the model again becomes integrable since the
are n operators (sx

i ) commuting with the Hamiltonian;
hence,Pssd ­ PPssd. The latter may seem surprising, es
pecially in light of recent discussions on chaos in classic
spin glass [17]. However, in spite of a possible comple
© 1998 The American Physical Society 5129



VOLUME 81, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 7 DECEMBER1998

s
m

l
er
h

d
)
s

,
ng
en

e:

e

thermodynamic behavior (Monte Carlo dynamics), th
Hamiltonian dynamics of a classical spin glass is int
grable. As a result, we expect another crossover from
WD statistics back to a Poissonian one for largeJyG.
This picture is confirmed by the numerical results fo
Pssd displayed in Fig. 1. ThesePssd distributions were
obtained for the states of the same symmetry class (S2),
namely, the number of spins up is always an even nu
ber (the interaction does not mix states with even and o
numbers of spins up). We will call the other symmetr
class with an odd numbers of spins upS1.

To analyze the evolution of thePssd distributions
with respect toJ, it is convenient to use the paramete
h ­

Rs0

0 fPssd 2 PWDssdg dsy
Rs0

0 fPPssd 2 PWDssdg ds,
wheres0 ­ 0.4729 . . . is the intersection point ofPPssd
and PWDssd [7]. In this way h ­ 1 corresponds to the
Poissonian case, andh ­ 0 to the WD distribution. The
data of Fig. 1 show that the distributions with the sam
value of h are very close, even ifJyG varies more
than 10 times. It is convenient to determine a critic
coupling strengthJc at which the crossover fromPPssd
to PWDssd takes place by the conditionhsJcyGd ­ 0.3.
The variation ofh with respect toJ is shown in Fig. 2
for differentn. The global behavior ofh is in agreement
with the above picture of transition between integrabilit
and quantum chaos. Indeed, whenJyG increases,h
drops to zero and then starts to grow again back to o
when the spin glass term in (1) dominates. The fact th
a WD statistics sets in is not trivial. Indeed, in dimensio
d ­ 1 hthe model (1) with nearest-neighbor coupling onl
andJii11 drawn randomly fromf0, Jg, studied in [10,11]j

0.0 1.0 2.0 3.0 4.0s
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0 1 2 3 4s0

1
P(s)

FIG. 1. Crossover from Poisson to WD statistics in the mod
(1) for the states in the middle of the energy band (612.5%
around the center) forn ­ 12: J ­ 0, h ­ 0.984 (+); JyG ­
JcpyG ­ 0.38, h ­ 0.3 (3); JyG ­ 0.866, h ­ 0.027 (p);
JyG ­ JcsyG ­ 6.15, h ­ 0.3 ( ); G ­ 0, h ­ 0.99 ( ).
Full curves show the Poisson and WD distributions. Tot
statistics (NS) is more than3 3 104; s is in units of mean
level spacing. Inset showsPssd for the first excitation from the
ground state in the chaotic regime forn ­ 15, JyG ­ 0.465,
h0 ­ 0.018 (NS ­ 3000) (3); the full line showsPWDssd.
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the statistics remains Poissonian (h ­ 1) at arbitrary
JyG, as is shown in Fig. 2. The critical pointJyG ­ 1
[11] does not manifest itself. Indeed, thisd ­ 1 model
can be mapped into a model of noninteracting fermion
(see, e.g., [11]). Therefore the total energy is the su
of one-particle energies that generically leads toPPssd.
As a result, RMT can never be applied to this mode
and dynamical (interaction induced) thermalization nev
takes place. Thermalization can appear only throug
a coupling to a thermal bath that was implicitly use
in Refs. [16,18]. On the contrary, in the system (1
there are two transitions from integrability to chao
which determine two critical couplingsJcp, from the
paramagnetic side, andJcs from the spin glass side
[hsJcsd ­ hsJcpd ­ 0.3; Jcs . Jcp ].

In analogy with finite interacting fermionic systems [7]
we expect that quantum chaos sets in when the coupli
strengthU becomes comparable to the spacing betwe
directly coupled statesDc (U , Dc). For small J in
the middle of the spectrum, one hasU , Jy

p
n and

Dc , 16Gyn2 since each state is coupled tonsn 2 1dy2
states in an energy band of8G. This gives the quantum
chaos border from the paramagnetic side:

Jcp ø CpGyn3y2, (2)

whereCp is some numerical constant. We note thatJcp is
exponentially larger than the multiparticle spacingDn ,
2nGy2n. For largeJ, the transitions between unperturbed
states atJ ¿ G are determined by theG term in (1), and
have typical valueG. The number of such transitions, in
a typical energy intervalJ, is n; hence,Dc , Jyn. This
gives the quantum chaos border from the spin glass sid
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FIG. 2. Dependence ofh on the rescaled coupling strength
JyJcp for the states in the middle of the energy band forn ­ 7
(,), 8 (h), 9 ( ), 10 (¶), 11 (+), 12 (p), 13 (3), 14 (n),
and symmetryS2; NS varies between 12 500 and 160 000. Th
full line for n ­ 12 shows the global behavior. Data for the
d ­ 1 model (see text) are given forn ­ 12 (d) as a function
of JyG (upper scale);NS ­ 30 000. The inset magnifies the
region nearJyJcp ­ 1.
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Jcs ø CsGn , (3)

where, again,Cs is some constant.
These theoretical predictions are confirmed by th

numerical results presented in Figs. 2 and 3 which giv
Cp ø 16 andCs ø 0.5. We attribute the deviation from
(2) in Fig. 3 seen for smalln to the fact that for these
values Jcp is rather large; this can slightly modify the
unperturbed spectrum and the estimates forDc. Also,
for small n the proximity of the second transition atJcs
can affect the actual value ofJcp. The data shown in the
inset of Fig. 2 indicate thath depends only on the ratio
JyJcp; the global scaling behavior is less visible than i
the fermionic model [7], apparently due to the reason
above.

The analysis at the band center corresponds to a ve
high energy or temperature. Therefore the properties
(1) near the ground state energyEg should be studied
separately. To do that, we investigatedPssd for the first
excitations fromEg within the same symmetry class. For
the classS1, the distributionPssd was computed for the
first four level spacings starting fromEg by averaging
over different disorder realizations. The first excitatio
and its h value (h0) was analyzed separately while the
other three were used to generate one cumulativePssd
with an h noted byh1 [19]. There are several physical
reasons for this separation: in the presence of a gap,h0 is
related to the gap fluctuations whileh1 characterizes the
quasiparticle excitations of higher energy, above the ga
in a metallic quantum dot with noninteracting electrons
h0 reflects the chaotic character of the dot givingh0 ­ 0
while the spectrum of higher excitations becomes close
PPssd with h1 ø 1.
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FIG. 3. Critical coupling strength Jc as a func-
tion of n: Jcp at band center for symmetryS2 (d),
and near the ground state (: S1; r: S2); Jcs at
band center for S2 ( ), and near the ground state
(h: S1; ¶: S2). Full lines show the theory [Eqs. (2) and
(3)] for the band center; the dashed line indicates the quantu
critical point atT ­ 0, JyG ­ 0.5. Logarithms are decimal.
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The global behavior ofh0 and h1 as a function of
J̃ ­ JysJ 1 Gd is shown in Fig. 4. This parametrization
naturally represents the two integrable limitsJ ­ 0 and
G ­ 0 in a symmetric way. In both extreme cases (J̃ ­
0; 1), h0 and h1 approach the Poissonian value 1. In
between there is a pronounced minimum withh0 ø 0
and h1 ø 0.1. When the number of spins in the shard
increases, the values ofh to the right from the minimum
go up markedly, whereas the minimalh value itself
changes only weakly. Theseh data suggest the existence
of a crossing point aroundJ ­ Jq ø 0.5G. For J , Jq,
the difference between curves for differentn is small,
whereas it is much bigger forJ . Jq. The data in Fig. 3
show the variation ofJcp, Jcs (for which h1 ­ 0.3) with
n; the behavior ofJcs is consistent withJcs ! Jq for
n ! ` for both symmetry classes. Also, according t
these dataJcp ~ n2a with 0 # a # 0.2. This value of
a is smaller than the one expected from the quantu
chaos criterion, used to derive (2). Indeed, for smallJ
near the ground stateDc , Gyn whereas the coupling is
still Jy

p
n, and therefore one expectsa ­ 0.5. For large

n, this would imply thath drops quickly to zero withJ
and then increases again after the crossing pointJq. In
such a scenario, in the thermodynamic limit (n ! `) we
expectJcp ! 0 and Jcs ! Jq, so thath changes from
zero (J , Jq) to one (J . Jq) with some intermediate
statistics at the critical pointJq. The determination of the
h value at that point forn ! ` requires larger system
sizes. We expect that this critical point corresponds
the quantum phase transition between paramagnetic a
spin glass phases discussed in Refs. [10,12,15] for a c
when all Gi ­ G. The above scenario is similar to the
situation for the Anderson transition ind ­ 3 [3]: as
for the Anderson insulator, the lack of space ergodicit
in the spin glass phase impliesh ­ 1. In this phase
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FIG. 4. Dependence ofh0 on J̃ ­ JysJ 1 Gd: n ­ 7 (d),
n ­ 9 ( ), n ­ 11 (1), n ­ 13 (3), n ­ 15 (m), n ­ 17
(¶), n ­ 19 (h); 2000 # NS # 30 000. Full curves connect
data forn ­ 7, 17. Inset showsh1 in the region nearJyG ­
JqyG ø 0.5 in more detail;6000 # NS # 90 000. Data are
for S1 symmetry.
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FIG. 5. Dependence ofh on dEyG for n ­ 12 (1000
realizations of disorder):JyG ­ 0.52 (p) (lower scale);JyG ­
3.46 (+) (upper scale). Data are forS1 symmetry.

J . Jq the eigenstates are expected to be localized
different parts of the phase space with small overla
between them. This would lead to uncorrelated leve
(Poisson distributed) as in integrable systems. Even if
this regime the levels can be rather sensitive to a sm
parameter variation [17], the eigenstates are not ergo
and the usual properties of quantum chaos [1,2] a
absent. The situation in the paramagnetic phaseJ , Jq

may be more complicated. Indeed, the criterionU , Dc

which givesa ­ 0.5 assumes that the couplings remai
small and do not strongly modify the unperturbedDc.
But nearEg the typical mean field acting on a spin is
of the orderJ and forJ ø Gy

p
n is much larger than the

local fieldsGi , Gyn. The strong mean field nearEg can
change the effectiveDc. Such a fact was seen for the Ce
atom [5]. This may lead to another scenario in which i
the thermodynamic limitJcp tends to some nonzero value
smaller thanJq. Such a behavior would be in agreemen
with the small variation ofJcp with n in Fig. 3.

The discussions above dealt with the two extreme cas
of energy values. The variation ofh between these two
limits is shown in Fig. 5 near the critical point and in the
spin glass phase as a function of the excitation ener
dE ­ E 2 Eg. Both cases show an unusual behavio
whenh initially grows with energy and starts to decreas
only later. This tendency is more pronounced near t
critical point. A possible reason for this behavior i
that the relative influence of the mean field become
weaker asdEyG increases. It is also possible that th
situation is similar to the case of a chaotic quantu
dot with noninteracting electrons discussed above: t
ground state is chaotic but the interaction between the fi
quasiparticle excitations is weak and so initiallyh grows
with dE, approaching the Poissonian value. As a resu
it is only at higher energy when the interaction betwee
quasiparticles becomes stronger thath starts to decrease
5132
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towards the WD value. Larger system sizes are require
to clarify this issue.
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