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Quantum Glassiness in Strongly Correlated Clean Systems:
An Example of Topological Overprotection
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This Letter presents solvable examples of quantum many-body Hamiltonians of systems that are unable
to reach their ground states as the environment temperature is lowered to absolute zero. These examples,
three-dimensional generalizations of quantum Hamiltonians proposed for topological quantum comput-
ing, (1) have no quenched disorder, (2) have solely local interactions, (3) have an exactly solvable
spectrum, (4) have topologically ordered ground states, and (5) have slow dynamical relaxation rates akin
to those of strong structural glasses.
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FIG. 1 (color online). (a) Cubic cell of an fcc lattice. The
centers of the six faces form an octahedron, with its sites labeled
from 1 (topmost) to 6. In addition to the set of octahedra formed
by the face-centered sites, there are three more sets of octahedra
that can be assembled from sites both on faces and on corners of
the cubic cells, totaling four such sets. Six-spin operators are
defined on these octahedra using the �x;y;z components of spin
on each vertex as described in the text. (b) Centers of six
octahedra cells that share a spin, which resides at the site ~I
shown at the center. The x, y, or z labels sitting at the centers of
the octahedra show which spin operators �x;y;z

~I
flip their OI

eigenvalue. Acting with any of the operators, �x;y;z
~I

always flip
the eigenvalues OI of exactly four octahedra.
Describing matter at near absolute zero temperature
requires understanding a system’s quantum ground state
and the low energy excitations around it, the quasiparticles,
which are thermally populated by the system’s contact to a
heat bath. However, this paradigm breaks down if thermal
equilibration is obstructed. While such nonequilibrium
behavior may be expected in disordered and frustrated
quantum systems (for instance, quantum spin glasses [1],
long-range Josephson junction arrays in a frustrating mag-
netic field [2], or self-generated mean-field glasses [3]), it
is not obvious that it may exist in clean systems with only
local interactions and without a complicated distribution of
energy levels. In this Letter I present solvable examples,
three-dimensional generalizations of Hamiltonians pro-
posed for topological quantum computing, that have solely
local interactions, no quenched disorder, and relaxation
rates akin to those of strong structural glasses. Therefore,
in these systems the topologically ordered ground states
are not reached when the temperature is reduced to abso-
lute zero.

Topological order and quantum number fractionaliza-
tion are some of the most remarkable properties of systems
of strongly interacting particles. Some phases of matter, in
contrast to common examples like crystals and magnets,
are not characterized by a local order parameter and broken
symmetries. Instead, as shown by Wen [4,5], some quan-
tum phases are characterized by their topological order,
such as the degeneracy of the ground state when the system
is defined on a torus or other surface of higher genus. These
topological degeneracies cannot be lifted by any local
perturbation. Topological order and quantum number frac-
tionalization are intimately related, and much effort has
recently been directed at these exotic properties, for they
may play a role in the mechanism for high-temperature
superconductivity [6–8]. Also, the robustness of a topo-
logical degeneracy to local noise due to an environment is
at the core of the idea behind topological quantum compu-
tation, as proposed by Kitaev [9]. Interestingly enough,
strong correlations that can lead to these exotic quantum
spectral properties can in some instances also impose
05=94(4)=040402(4)$23.00 04040
kinetic constraints, similar to those studied in the context
of classical glass formers [10–17].

The possibility of glassiness in pure strongly correlated
quantum systems with solely local interactions is demon-
strated by studying the following exactly solvable ex-
ample. A model displaying strong glassiness is
constructed on a three-dimensional (3D) face-centered
cubic (fcc) Bravais lattice, spanned by the primitive vectors
a1 � � 1��

2
p ; 1��

2
p ; 0�, a2 � �0; 1��

2
p ; 1��

2
p �, and a3 � � 1��

2
p ; 0; 1��

2
p �.

Each site can be indexed by i; j; k 2 Z, denoted by a
superindex I � �i; j; k�. At every lattice site I one defines
quantum spin S � 1=2 operators �x

I , �
y
I , and �z

I .
The fcc lattice can house sets of octahedra: the simplest

one to visualize is the one assembled from the centers of
the six faces of a cubic cell, and is shown in Fig. 1(a). In
addition to this simple set, there are three more sets of
octahedra that can be assembled from sites both on faces
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and on corners of the cubic cells, totaling four such sets,
which we label by A, B, C, and D.

It is simple to see that the total number of octahedra
equals the number of spins: each lattice site I is the topmost
vertex of a single octahedron. Define PI as the set of six
lattice points forming the octahedron with site I at its top.
The six vertices are indexed by Jn�I�, for n � 1; . . . ; 6,
with one of the vertices J1�I� � I. The six labels are
assigned in such a way that the pairs
fJ1; J4g; fJ2; J5g; fJ3; J6g are diagonally opposite sites
from one another, and this number labeling is illustrated
for a single octahedron in Fig. 1(a). From the one-to-one
relation between a site I and an octahedron PI, we can also
partition the lattice sites into four sublattices A, B, C, and
D.

Now define the operators OI as

O I � �z
J1�I�

�x
J2�I�

�y
J3�I�

�z
J4�I�

�x
J5�I�

�y
J6�I�

: (1)

This construction generalizes to 3D the plaquette interac-
tions defined for planar 2D lattices by Kitaev [9] and Wen
[18]. These operators commute, 	OI;OI0 � � 0 for all pairs
I; I0. It is simple to see how: two octahedra PI and PI0 can
either share 0, 1, or, at most, 2 spins. If they share 0 spins,
they trivially commute. If they share 1 spin, the component
(x, y, or z) of � for that shared spin coincides for both OI
and OI0 (the two octahedra touch along one of their diag-
onals). If they share 2 spins, the components of � used in
the definition of OI and OI0 are different for both spins,
there is a minus sign from commuting the spin operators
from each of the shared spins, and the two minus signs
cancel each other.

Consider the Hamiltonian

Ĥ � �
h
2

X

I

OI: (2)

Because the OI all commute, the eigenvalues of the
Hamiltonian can be labeled by the list of eigenvalues
fOIg of all the OI. Notice that O2

I � 1, and so each OI �

1. In particular, the ground state corresponds to OI � 1
for all I.

Because the number of spins equals the number N of
sites and of octahedra, one may naively expect that the list
fOI � 
1g exhausts the 2N states in the Hilbert space.
However, there are constraints that OI satisfy when the
system is subject to periodic boundary conditions (com-
pactified). One can show that

Y

I2A

OI �
Y

I2B

OI �
Y

I2C

OI �
Y

I2D

OI � 1: (3)

There are four constraints; therefore, there are only 2N�4

independent fOI � 
1g. This implies, in particular, that
there is a ground state degeneracy of 24 � 16. The ground
state degeneracy is not associated with a symmetry; in
particular, it is easy to show that h�x;y;z

I i � 0. This is a
topological degeneracy, and the eigenvalues Ta � 
1
04040
(a � 1; 2; 3; 4) of a set of four nonlocal (topological) op-
erators T a are needed to distinguish between the 16 de-
generate ground states.

The operators T a can be constructed as follows. Let
P l � fIjj� k � lg be a set of points along a horizontal
plane. Notice that each such plane contains sites in only
two of the four sublattices A;B;C;D. For example, P 1 �
A [ B and P 2 � C [D. Define T 1 �

Q
I2P 1\A�

z
I , T 2 �Q

I2P 1\B�
z
I , T 3 �

Q
I2P 2\C�

z
I , T 4 �

Q
I2P 2\D�

z
I . It is

simple to check that 	T a;OI� � 0 for all a and I, and
the T a trivially commute among themselves. Hence the
four eigenvalues T1;2;3;4 � 
1 of T 1;2;3;4 can distinguish
the 16 degenerate ground states.

The spectrum of the Hamiltonian Eq. (2) is that of a
trivial set of N � 4 free spins, determined by the list of
eigenvalues fOI � 
1g of all the OI, subject to the condi-
tion Eq. (3): EfOIg

� � h
2

P
IOI. Excitations above the

ground state (OI � 1 for all I) are ‘‘defects’’ where OI �
�1 at certain sites I. The equilibrium partition function is

given by Z � 16
P

fOI�
1ge
�1=2��h

P
I
OI . At thermal equilib-

rium at temperature T, the thermal average hOIi � tanh h
2T ,

and the concentration or density ofOI � �1 defects is c �
1
2 �1� tanh h

2T�. Notice that we have encountered an analo-
gous situation to that in the classical spin facilitated models
[10], in particular, the plaquette models displaying glassy
dynamics [14–17]: the thermodynamics is trivial in terms
of noninteracting defect variables. To study the approach to
such an equilibrium state, the coupling of the system to a
bath of quantum oscillators must be introduced.

The Hamiltonian of the system plus bath of oscillators
can be formulated as [19,20]

Ĥ � Ĥ � Ĥbath � Ĥspin=bath;

where Ĥ is defined in Eq. (2), the bath Hbath contains a
family of harmonic oscillators a ;I;a

y
 ;I for each site, and

Hspin=bath �
X

I;!

g!�!
I

X

 

�a! ;I � a!y ;I �; (4)

where the g! are the generic coupling constants for each of
the three components (! � 1; 2; 3 or x; y; z) of the spins.

Although the spectrum of Ĥ in Eq. (2) is the same as that
of free spins in a uniform magnetic field h, the variables OI
for different octahedra PI cannot be independently
changed, as opposed to spin variables in a free spin model
in a field h. The bath couples to the physical degrees of
freedom, the spins �~I. Acting on a site ~I 2 PI with one of
the operators �x

~I
, �y

~I
, or �z

~I
flips or not the eigenvalue OI

depending on whether �x;y;z
~I

OI � �OI�
x;y;z
~I

, respectively.
However, the spin �~I is shared by six neighboring octahe-
dra, and thus one cannot change the eigenvalue of OI
without changing the eigenvalues OI0 of some of the
neighbors by the action of the local spin operator.
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If integrated out, the bath degrees of freedom lead to a
nonlocal in time action and to dissipation effects. Instead
of working with the dissipative action, let us follow the
time evolution of the system plus bath, and look at the
possible evolution pathways of the quantum mechanical
amplitudes of the system plus bath degrees of freedom.
(Yet another alternative is to work within the von Neumann
density matrix formalism [21], and follow the time evolu-
tion of the matrix elements.) After evolution for time t
from some initial state, the system is in a quantum me-
chanical superposition

j��t�i �
X

fTa;OI�
1g

�fTa;OIg
�t�jfTa;OIgi � j�fTa;OIg

�t�i; (5)

where j�fTa;OIg
�t�i is some state in the bath Hilbert space

with norm one. The fact that the bath degrees of freedom
couple to single quantum spins �I [as in Eq. (4)] enters the
problem through the permitted channels for dynamically
transferring amplitudes among the �fTa;OIg

.
The processes that redistribute or transfer amplitude

among the �fTa;OIg
correspond to different orders in pertur-

bation theory on the g! system-bath coupling. There is also
a thermal probability factor coming from the bath that
depends on the difference between the initial and the final
energies EfOIg

� � h
2

P
IOI of the system. The simplest

class of paths is a sequential passage over states connected
through first order in g! processes; this is a ‘‘semiclassi-
cal’’ type trajectory.

Through the action of a local �x;y;z
~I

operator, exactly four
of the six octahedra operators OI sharing spin ~I are flipped.
The reason is that the six octahedra operators can be
divided into three groups of two octahedra having in their
definitions Eq. (1), respectively, the x, y, and z components
of the spin operator at the shared site. This is illustrated in
Fig. 1(b). Acting with any of the three components of the
spin operator �x;y;z

~I
on this shared site will flip exactly four

out of six defect variablesOI. Hence, a single defect cannot
be annihilated in this process. Defects disappear from the
system only through recombination. This multidefect type
dynamics makes it difficult for the system to relax to
equilibrium, exactly as in the kinetically constrained clas-
sical models [14–17]. For example, if the temperature is
lowered, in order to decrease the defect density, either four
defects must come together and annihilate (4 ! 0 decay)
or three defects become one (3 ! 1 decay). Moreover,
single defects cannot simply diffuse through the system;
that would require flipping only two neighboring octahe-
dra, but instead four are always flipped. To move, an
isolated single defect must first decay into three defects
(1 ! 3 production) because of the multidefect dynamics,
then a pair can diffuse freely (2 ! 2) and recombine with
another defect through a 3 ! 1 decay process. Because of
the initial 1 ! 3 production process, there is an energy
barrier of 2h to be overcome. This activation barrier leads
to recombination or equilibration times
04040
tseq � $0 exp�2h=T�

that grow in an Arrhenius fashion as temperature is low-
ered ($0 is a microscopic time scale).

What about quantum tunneling? Amplitude can be trans-
ferred from some initial to some final state via virtual
processes, in which the number of defects is larger in the
intermediate (virtual) steps. Virtual processes of nth order
involve a product of n spin operators, F �

Qn
s�1 �

!s
~Is

. For

a single defect to disperse through quantum tunneling, an
F operator that flips only two octahedra is needed.
However, one can show that any F will flip at least four
octahedra (as opposed to Kitaev’s and Wen’s models, in
which two defects stand at the end points of ‘‘strings,’’ here
four or more defects lie at the corners of ‘‘membranes’’).
Although defects cannot disperse, tunneling still contrib-
utes to defect annihilation and to defect pair motion. In
perturbation theory, a process in which a defect pair sepa-
rated by a distance & can hop by a lattice spacing has an
amplitude of order �g=h�& (notice the energy denominator
h) and defect annihilation has an amplitude �g=h�&

2
. Hence

virtual processes are suppressed exponentially in &, and if
the system were to equilibrate at temperature T, where the
typical defect separation is & � c�1=3 � eh=3T , the charac-
teristic time scale

ttun � $0 exp	ln�h=g�eh=3T�

would grow extremely quickly as the temperature is low-
ered. What we learn from this simple estimate is that
quantum tunneling is less effective than classical sequen-
tial processes in thermalizing the system. This is counter-
intuitive to the notion that at low temperatures quantum
tunneling under energy barriers remains an open process
while classical mechanisms are suppressed due to high
thermal activation costs. The reason for the particular
quantum freezing in this system is simple: as the distance
between defects increases at lower temperatures, the bar-
rier widths increase, which debilitates tunneling. In pass-
ing, we note that in a finite system of size L, one must
replace & by L in the estimation of the recombination or
equilibration times, ttun � $0 exp	ln�h=g�L�; this time
scale is also of the order of that for tunneling between
two topological ground states in a finite system of size L
[9].

Because tseq and ttun grow rapidly as the temperature
lowers, the system will fall out of equilibrium at low
temperatures, and physical correlation functions will not
be those simply computed in the framework of equilibrium
quantum statistical mechanics. The simplest correlation
function that illustrates this point is the one-point function
related to the time-dependent spatial concentration of de-
fects (I�t� �

1
2 	1� hOI�t�i�; let us find how it approaches,

as a function of time, the asymptotic equilibrium value
cf �

1
2 �1� tanh h

2Tf
� when the temperature is, say, reduced

by half from Ti to Tf � Ti=2. The mechanism for equili-
2-3
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bration is diffusion-annihilation of defects. We have argued
that defects are always flipped in quadruplets, and single
defects cannot freely diffuse without generating more de-
fects. Defect pairs, however, are free to diffuse quickly, so
we can reduce the problem to an effective reaction diffu-
sion [22] of the A� A� 0 type for the single defects
facilitated by the pair motion. The quantum average over
the state Eq. (5) can restore translational invariance of the
density (I�t�, so spatially homogeneous initial densities
remain homogeneous under time evolution, (I�t� � c�t�;
hence, the dynamics for this problem is controlled by the
simple rate equation _c�t� � �k�c2 � c2f�, with the kinetic
rate coefficient k directly proportional to the defect diffu-
sion constant at temperature Tf, from which it follows that
k / 1=tseq. At long times c�t� � cf / cf exp��2cfkt�,
from which we extract the time constant for the relaxation
of the one-point correlations to be $1pt � tseq=2cf. Notice
that the relaxation time $1pt for the one-point correlation is
longer than tseq because the annihilation rate is reduced for
low densities of defects. This enhancement must be cut off
when the density of defects is of order 1=L3, in which case
$1pt � L3tseq. The relaxation time is just polynomial in the
system size L, so if tseq saturated to a constant value as the
temperature is lowered, the system would not behave as a
glass. It is the Arrhenius form of tseq that causes the glassy
behavior.

The fact that the system presented above is exactly
solvable helps one to understand the origin of its glassy
behavior, but it is not a necessary ingredient. To illustrate
this point, one can simply add a perturbation *Ĥ �P
I;!�!�!

I . For �!=h less than order unity, this interaction
can be analyzed in perturbation theory similar to the argu-
ments above for the ratios g!=h. The perturbation will give
the defects some mobility, but that becomes exponentially
small as the defects grow apart. Indeed, these arguments
can be generalized for any local perturbation written in
terms of the physical spins �I, as long as the coupling
constants are small compared to the gap h.

To summarize, the essence of why this quantum system
is glassy is the following. The thermodynamics is best
described by working in the basis of eigenstates or defects
jfT a;OIgi; however, upon acting on these states with
physical spin operators �x;y;z

I , single defects can neither
be annihilated nor simply be moved around (diffused). The
lack of defect diffusion in these glassy systems is protected
by the fact that any physical spin operators must flip
quadruplets, not pairs, of defect variables. The system
can relax only by multidefect real processes that are ther-
mally suppressed or else by virtual processes that involve
quantum tunneling of increasingly large objects as the
defect density is reduced at low temperatures.

Many elastic, thermal, electronic, and magnetic proper-
ties of classical glassy material systems are consequences
of these materials being out of equilibrium. Such properties
04040
can be tailored according to preparation schemes, for
example, by controlling cooling rates. In contrast, because
of the difficulties in studying real-time dynamics of
strongly interacting quantum systems coupled to a thermal
bath, very little is currently known about properties of
quantum matter that can be engineered by keeping systems
out of equilibrium. In a broader scope, the main result of
this work is that it presents a concrete example of a
solvable toy model which shows without arbitrary or ques-
tionable approximations that a pure quantum system with
only local interactions can, indeed, stay out of equilibrium.
This result supports the possibility that there may be ma-
terial properties due to nonequilibrium glassy behavior in
quantum matter. It also suggests a new design constraint
for topological quantum computing: that the ground state
degeneracy is protected while the system is still able to
reach the ground states.
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