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Abstract
Surface defect detection for button is a tough task because of complex surface texture, variety
of defects, and limited defect samples which often leads to an imbalanced issue. Aiming at
solving these problems, a similarity metric method based on Siamese network is proposed for
detecting defects of button and applied in a practical machine-vision-based system. In our
system, the Siamese network with a specifically designed loss function is used for automatic
feature extraction and similarity metric of samples. The learning process minimizes the specific
loss function, which drives intra-class distance among positives to be smaller and inter-class
distance to be larger in the feature space, so that after training, defect-free samples are clustered
while defect samples are mapped to outliers. The proposed method is evaluated on button
datasets of multiple kinds of defects including dent, crack, stain, hole, uneven etc. Experi-
mental results show 98% detection precision for the proposed method, and 95% detection
precision when dealing with imbalance issue, indicating its advantage over conventional
methods. Comparison experiments show that for our task, the proposed loss function outper-
forms other recent published loss functions in face recognition or ReID field. Moreover, we
optimize our method with different strategies. Our method reaches 6 fps detection speed on an
embedded DSP platform, indicating its potential in providing an effective approach for online
detection on production.
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1 Introduction

Defect detection for industrial products plays a significant part in industrial manufacture.
Nowadays surface inspection in practical production relies mainly on manual inspection,
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which is generally subjective and inefficient. Past studies have shown the great potential of
machine vision based method in taking the place of manual inspection and improving
detection efficiency. In the field of automated optical inspection (AOI), vision based methods
have been successfully applied to metal [13, 17, 28], textiles, fabric [1, 3], caps [32], LCD [4],
components [15, 29] and other applications.

Buttons contain various defects, such as dents, holes, cracks, stains, wrong painting, fading,
and uneven surface. Meanwhile, the various patterns and reflective properties of the surface
pose challenges to automated detection. Therefore, an AOI system for button detection and
general method for online detection are urgently needed.

Surface defects detection methods have made significant progress over the past
decades. Conventional methods can be divided into segmentation based approaches
[1, 13], template matching approaches [5, 9, 12], and feature-based approaches [18,
28]. However, the former two methods are mostly applied to targets with simple or
regular surfaces, suffering from lack of versatility. Feature-based approaches including
histogram [32], co-occurrence matrix [2], LBP [18], require manual design of feature
extraction, algorithms, and selection of suitable classifiers. In recent years there has
been an increasing body of researches on deep learning based approaches [13, 19, 20,
23, 25, 31]. Deep learning methods usually use end-to-end training, combining feature
extraction and classification together, and are reported to have strong versatility [19].
[3, 22] proposed convolution neural network (CNN) based methods and obtained
appealing results. The automatic identification of defects is the advantage of deep
learning method. [14, 30] proposed deep learning methods for casting and laser melting
parts, showing the advantage of deep learning in automatic defect extraction. However,
deep learning methods are limited by extensive calculation and demand of expensive
hardware platform. Therefore, how to implement deep learning methods on the embed-
ded system is a tough problem, Lizhe Liu et al. [16] proposed a fast detection method
for button surface defects based on CNN and reached a good performance at speed of 5
fps on DSP based smart camera, however this method required sufficient defective
samples for training.

Unfortunately, negative samples are much fewer than positives in practical applications.
Imbalanced samples lead to an unsatisfied performance in machine learning based methods,
that is over-fitting. In this situation, the predictive model developed by conventional machine
learning algorithms could be biased and inaccurate. Traditional resampling techniques increase
the likelihood of over-fitting, and thus may be not very effective for high dimensional data. In
Chuanxia Jian’s research [11], a new sampling method is proposed to address the imbalanced
defect example classification for mobile phone screen glass. This method improves the
classification accuracy of the minority class [11]. However, this method suffers from a
complex detection process. Fortunately, we find that similarity metric is a potential solution
to the imbalanced problem, considering the similarity between positive samples and various
appearance of negative samples. Siamese network is a deep learning based method used for
measuring similarity among samples and extracting features automatically [7]. The main idea
of Siamese network is to find a mapping function which maps input patterns into a target space
such that after trained with a specific loss function, similar images are mapped close to each
other in the feature space while dissimilar image pairs are mapped far from each other [26].
The similarity metric based Siamese network is effective to distinguish small differences
between the image pairs and can be extended to our task.
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The remainder of this paper is organized as follows. Section 2 will detail our detection
process. Section 3 will show the detection method based on Siamese network. Section 4 will
show results of the experiments on button dataset. Finally, section 5 is a conclusion.

2 Detection process

Our approach is to build a trainable model that nonlinearly maps the input sample images to a
certain feature space. The mapping function is achieved after training the model. Figure 1
depicts the general pipeline of our method. A Siamese network architecture is used for
extracting features by learning similarity. The loss layer is the key to our network, specifically
designed to minimize the squared Euclidean distance between positive samples and maximize
the distance between positives and negatives. The positive feature points are all clustered into a
specific space, while negatives are far away from positive feature points. In order to classify
the features, we use SVDDmodel to construct a hypersphere so that we can consider the defect
point as an outlier according to the distance to the center of hyperspheres.

It is worth mentioning that we normalize the object region by converting the circular button
foreground into a rectangle. To realize it, we take the center of the circle area as the base point,
and convert the pixels from Cartesian coordinate (x, y) to polar coordinate (r, θ), respectively
shown as (1) and (2) in Fig. 2.

r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x02 þ y02

p
ð1Þ

θ0 ¼ arctan
y0
x0

� �
ð2Þ

Where (x0, y0)is a pixel in the circle area, and (r0, θ0)is the corresponding pixel in the rectangle
area.

The input of our network is cropped blocks of the original image. Considering that button defects
vary in size, and tiny defects (less than twenty pixels) could be far smaller than the whole button
image, we adopt blocking detectionmethod to increase the ratio of the defect area to the input image
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(a)Training process
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Fig. 1 Pipeline of our method. (a) Training process (b) Recognition process
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area. We crop small blocks of size 32 × 32 from the normalized region image and adjacent areas
have an overlap, as is shown in Fig. 3(b). After cropping the normalized button region, we will get
datasets of defect-free blocks and defect blocks, as shown in Fig. 3(c) and Fig. 3(d).

r

( , )x y

Fig. 2 The normalization of a circle area

normalized button region 

original image

(a)
32 pixel

32
 p

ix
el

(b)

(c)                                         (d)
Fig. 3 Steps of cropping images. (a) Regional normalization though polar coordinate transformation. (b) Overlap
cropping strategy. (c) Positive cropped images. (d) Negative cropped images
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3 Detection method based on Siamese network

3.1 Feature extraction with Siamese network

The architecture of the proposed network is given in Fig. 4. The Siamese network for feature
extraction consists of two identical branches with shared parameters. Each branch poses a
CNN architecture. In general, images of different labels go through two branches during
training and the outputs features are fed to the loss layer. The loss layer consists of the new loss
function and optimizers. The loss function is represented by inter-class loss and intra-class
loss. The two optimizers work for minimizing the inter-class loss and intra-class loss respec-
tively. After training the network, we achieve the mapping function f(x), which is the forward
propagation of CNN. The output of CNN is the extracted features of an input image.

In order to achieve online detection, we propose a small network to ensure the detection
speed. CNN has a strong ability for classification and feature extraction. Unlike CNN used for
classification, the output of proposed CNN is not a label or probability but a feature vector. The
proposed architecture consists of six layers, including three convolutional layers with size of
3 × 3 kernel, three max-pool layers and a fully connected layers. Each layer contains trainable
parameters and consists of a linear transformation followed by a nonlinear mapping, which is
implemented by rectified linear units (ReLU) [8] to accelerate the training process. The
network takes an image blocks of size 32 × 32 × 3 as input, and outputs a 120-dimensional
feature vector. The detailed architecture of the network is shown in Fig. 5.

Convolution layer 1
Max pool 1

Convolution layer 2
Max pool 2

Convolution layer 3
Max pool 3

Full connection

Convolution layer 1
Max pool 1

Convolution layer 2
Max pool 2

Convolution layer 3
Max pool 3

Full connection

Defect-free Sample Defect Sample

2-CNNs with Shared Parameters

Loss Layer

Inter-class Loss Intra-class Loss
tOp�mizer rOp�mizer

Fig. 4 Siamese network Architecture
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3.2 Loss function

3.2.1 Related loss functions

Similarity metric has been successfully used in face recognition and ReID field, and can
be extended to our task with some small changes. Since we are more concerned with
cluster of positive samples, the proposed loss function is specifically designed to
encourage defect-free features to be close and push defect ones far away in feature space
during learning stage. We compare our loss function with other loss functions described
below in defect detection task.

Triplet loss Triplet loss drives the similarity metric to be small for pairs of images from the
same class, and large for pairs from different class [21]. In a standard triplet loss network, the
inputs are a batch of triplet units{<xa, xp, xn>}, where xa is the anchor image, xa and xp are the
same class., the loss function can be defined as:

L xa; xp; xn;Wð Þ ¼ ∑max f xað Þ− f xpð Þk k22 þ m− f xað Þ− f xnð Þk k22; 0
n o

ð3Þ

However, how to choose proper triplet unit is a complex problem. If triplet units are easy
to distinguish, the triplet loss will rapidly decrease to 0, leading to the ineffectiveness of
network training. Generating all possible triplets would result in numerous triplets.
Meanwhile, the triplet loss function is quite sensitive to the selection of anchor point,
which means improper anchors can result in great interference in the training stage and
lead to a slow convergence.

Batch hard triplet loss(BHTL) Batch hard triplet loss was proposed for mining hard triplets,
first applied in person ReID subfield [10]. As the dataset gets larger, the possible number of
triplets grows cubically, however most of possible triplets are easy triplets which are less useful
for training. Thus mining hard triplets is crucial for learning. The hardest positive and the
hardest negative samples within the batch are selected when forming the triplets for computing

Conv2
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Maxpool Maxpool Conv3
3×3

MaxpoolConv1
3×3

8

32
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8 8

8 16
16 32

4

32
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512
120
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Fig. 5 CNN Architecture
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the loss. In our task, we choose a certain set of N triplets units, their images are stacked into a
batch of size 3N. Batch hard triplet loss is defined as:

LBH ¼ ∑
N

a¼1

"
mþ max

p¼1:::N
D f xað Þ; f xp

� �� �
− min

n¼1:::N
D f xað Þ; f xnð Þð Þ

#
ð4Þ

where xa corresponds to the anchor sample. xp and xn correspond to the farthest positive and the
nearest negative samples of xa, respectively, <xa, xp, xn> is the hardest triplets for the anchor a.
There are N hardest triplets of a mini batch. They can be considered moderate triplets, since
they are the hardest within a small subset of the data, which is exactly best for learning with the
triplet loss [10].

Margin sample mining loss(MSML) Triplet loss and batch hard triplet loss only consider relative
distances between positive and negative pairs. Margin sample mining loss(MSML) is a metric
learning loss for ReID [27], which not only considers the relative distances but also considers
absolute distances between positive and negative pairs. It picks the most dissimilar positive pairs
and the most similar negative pair in the whole batch. In our task, MSML is defined as:

Lmsml ¼ max

 
max
A;A 0

‖ f A− f
A
0 ‖2−min

C;B
ð‖ f C− f B‖2Þ þ m; 0

!! 
ð5Þ

where A and A' are the positive samples, B and C belong to different identities. Subscript A and A'
denote the hardest positive pairs, and subscriptBandCdenote the most difficult pairs to be
distinguished.

3.2.2 Proposed loss function

Aiming at defect detection task, we design a new loss function to cluster positive samples. The
purpose of proposed loss function is to guide the learning process so that after training, positive
points should locate in a hypersphere in the d-dimensional feature space. Our network adopts
mini batch training.

It is noted to mention that we use the cluster center to take place of the anchor point in

triplet loss. Given a mini batch XP ¼ xP1 ; x
P
2⋯⋯xPn

� �
containing n images of positive block

images, the cluster center is defined as

Cp ¼ 1

n
∑
n

i¼1
f xiP
� � ð6Þ

Where f xP1
� �

; f xP2
� �

⋯⋯ f xPn
� �� �

is feature vector acquired through CNN.

We use Euclidean distance to measure similarity of feature points. In order to improve the
ability to predict unknown defect samples, we consider not only relative distance but also
absolute distance. We proposed a concentric-circles model with two margin parameters
predefined asα1 andα2.α1 represents the minimummargin between negative points and positive
points and α2 represents the maximum margin between positive points and negative points.

Batch hard mining is used in our model. Different with triplet loss, BHTL, and MSML, we
constrain the positive points near the center point instead of anchor leading to a smaller intra-

variance. Given mini batches XP ¼ xP1 ; x
P
2⋯⋯xPn

� �
and XN ¼ xN1 ; x

N
2 ⋯⋯xNn

� �
, the inter-
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class loss Lt(W) and intra-class lossLr(W)are defined as

Lt Wð Þ ¼ ∑
n

i¼1

1

2
max 0; f xP*

� �
−CP

		 		2
2
− f xNi

� �
−CP

		 		2
2
þ α1

n o
ð7Þ

Lr Wð Þ ¼ ∑
n

i¼1

1

2
max 0; f xPi

� �
−CP

		 		2
2
−α2

n o
ð8Þ

wherexp*is the farthest positive point to the center.
The total loss is defined as

Ls Wð Þ ¼ Lt Wð Þ þ Lr Wð Þ ð9Þ
For every mini batch, the training process consists of two steps: minimization of the inter-class
loss and minimization of the intra-class loss.

For the first step, if Lt(W) ≤ 0, which means that the distance of negative point set is far
enough to positive point set. The partial derivative of both the positive and negative features
are 0. Otherwise the partial derivative of the farthest positive features is defined as

∂Lt Wð Þ
∂ f xP*ð Þ ¼ f xP*

� �
−CP ð10Þ

Cluster center

Positive feature point

Negative feature point

Fig. 6 The illustration of clustering at different phase of training

Fig. 7 The loss curve of four methods
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The partial derivative of the negative features is defined as

∂Lt Wð Þ
∂ f xNið Þ ¼ CP− f xNi

� � ð11Þ

For the second steps, ifLr(W) ≤ 0, the distance of positive point set is close enough to the
cluster center. The partial derivative of positive features is 0. Other-wise, the partial derivative
of the positive features is defined as

∂Lr Wð Þ
∂ f xPið Þ ¼ f xPi

� �
−CP ð12Þ

Figure 6 illustrates the ideal situation. The dashed circle outside represents the margin of
negative samples and the dashed circle inside represents the margin of positives. The red dots
and blue dots correspond to high dimensional features of positive blocks and negative blocks.
At the beginning of the training phase, the value of loss function will be large because of the
random initialization of weights. The positive points approach the center point gradually and
the negative points are given penalty if it is mapped inside the hypersphere. After training, we
will obtain the mapping function through the forward propagation of CNN.

In this paper, the anchor is replaced by center of positive features, more samples involved in
the calculation. Comparison experiment shows that our method can accelerate training con-
vergence. Figure 7 shows the loss curve of proposed network and other three loss functions
mentioned above in the training phase. Obviously, BHTL, MSML and proposed loss function
converge faster than the triplet loss. The network trained with BHTL sometimes cannot
effectively separate the negative samples from positives at the beginning, in that the distance
from positive samples to the anchor may be farther than that from negatives to the anchor, as a
result of random initialization of weights. Therefore, the loss of BHTL fails to drop in the
beginning until the network pushes the negative points far enough away. Similarly, MSML
also exists this phenomenon. For our loss function, we use cluster center to take place of
anchor, which makes the training phase faster and more stable. On the intel i7 7700k and
GTX1050ti platforms, the training time of our method is about 20 min, outperforming
MSML(45mins), BHTL(30 min) and triplet loss(120 min).

3.3 SVDD one-class classifier

After training the Siamese network, we obtain the mapping function f xli
� �

from the input

image to the feature space. Positive samples are clustered in the feature space, while negative
samples can be seen as outliers. Therefore, the detection task can be taken as outlier detection.
In fact, we can construct a hypersphere based on a center point and radius, where the center is
the mean of positive points and the radius is a threshold, such that the point outside the
hypersphere is considered as an outlier. However, the threshold is hard to set, and some
positive outliers will influence the calculation of the center. SVDD is a method for outlier
detection, widely applied to various fields for its strength in learning without any a priori
knowledge on the distribution of dataset. SVDD attempts to find a hypersphere that best
describes the region of the feature space in which a set of data points lie [24]. The hypersphere
is only affected by support vectors. SVDD introduces kernel function, which makes the
classifier more flexible. The objective function of SVDD is
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max
R;α;ζ

R2 þ C ∑
l

i¼1
ξi subject to ϕ xið Þ−ak k2≤R2 þ ξi; i ¼ 1; 2; 3:::l; ξi≥0; i ¼ 1; 2; 3; :::l ð13Þ

Where ϕ is kernel function, xiis the training data, C is the user-specified parameter. After (8) is
solved, a hypersphere is characterized by the center aand the radius R, ξ is the distance
between instance i to center.

The problem (8), as is often referred to as the primal problem, is difficult to solve. we can
change the primal problem to dual problem using Lagrange multipliers.

max
α

∑
l

i¼1
αiϕi;i−a

Tϕa subject to ∑
l

i¼1
αi ¼ 1; 0≤αi≤C ð14Þ

The dual problem (9) takes a similar form as the SVM dual problem. Therefore, existing
optimization methods such as decomposition methods for SVM dual problems can be easily
applied to SVDD problem.

For any test instance x, we must check the value

ϕ xð Þ−ak k2−R2 ¼ K x; xð Þ−2 ∑
i:αi>0

αiK x; xið Þ−R2 þ C ð15Þ

Where the samples xi for which αi≠ 0 are called support vectors. K is the kernel function. C is
independent from the test instances, and can be stored after solving the dual problem.

If (10) is positive, x is considered as an outlier, the corresponding block is defective.

4 Experiments and discussion

In order to verify the effectiveness of the proposed method, an experimental physical setup has
been built. The physical setup shown in Fig. 8 is used for capturing the images of button
surface. The vision module consists of a camera based on DSP and an integrating sphere light
source. The button images are captured by the DSP based camera triggered by the signal come
from the trigger sensor. Then, the camera runs the detection algorithm and controls the sorting

DSP based
Camera

Lighting Sorting
Device

Trigger
Sensor

Negatives
Outlet

Buttons

Fig. 8 System for detection
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device according to the detection results. The sorting device is a solenoid valve with the
conduit connected to an air compressor. The negative samples will be blown to outlet for
negatives, while positive samples will leave the transfer platform through the outlet for
positives and move on to next detection link.

4.1 Button datasets

We evaluate the proposed method on images of six kind of samples photo-graphed by
ourselves and not published. The original image is 640 × 480 × 3 acquired by a CCD camera.

Table 1 Typical image of datasets
and defect type

Sample Defect-free Defect
Defect 

type

Button

features

1
stain, hole, 

wrong paint

character,

random 

patterns

2

stain, 

uneven, 

crack

random 

patterns

3
scratch, 

rack

mixed 

colors

4

stain, 

scratch,   

dent

pure color,

reflective

5 stain
reflective,

transparent

6

bubble,

dent,

color de-

fect,

scratch

strong 

reflection

Table 2 Numbers of test buttons

sample 1 2 3 4 5 6

defect-free number 213 211 201 396 477 174
defective number 142 196 131 134 276 188

Multimedia Tools and Applications (2019) 78:34627–34648 34637



Table 1 gives the details of the datasets including typical defect types that may occur in
production. The numbers of each kind of test samples are listed in Table 2.

4.2 Performance evaluation with enough samples

In this section, we evaluate the performance of our method based on true positive recognition
(TPR) rate, true negative recognition (TNR) rate, and recognition (R) rate.

TPR ¼ NTP

NTP þ NFP
ð16Þ

TNR ¼ NTN

NTN þ NFN
ð17Þ

R ¼ TPRþ TNR
2

ð18Þ

where NTP is the number of correctly detected positive samples, NFP is the number of falsely
detected positive samples, NTN is the number of correctly detected negative samples, NFNis the
number of falsely detected negative samples.

Fig. 9 Results of 7 methods on button datasets

Table 3 Cooperation methods

Methods Batch size Margin parameters Feature classifier

Triplet loss 1 2 SVDD
BHTL 16 2 SVDD
MSML 16 2 SVDD
Proposed method 16 Inter-class margin: 2

Intra-class margin: 1
SVDD
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The training set for each kind of samples consists of about 8000 positive blocks and 6000
negative blocks cropped from 200 positive samples and 200 negative samples using the
method mentioned in section 2.

We compare our method with other methods as follows.

& SVM with HOG features.
& SVM with LBP features.
& CNN for classification. The CNN model is similar to the architecture used in the Siamese

network above except that the CNN has an additional two neurons output layer fully
connected to the last layer.

& Similarity metric methods including triplet loss, BHTL, MSML and proposed method.
Table 3 shows the details of four methods.

The R value for all methods are shown in Fig. 9 and details of results are shown in Table 4.

(a) (b)

(c) (d)

Fig. 10 Visualization of the samples 6. (a) Triplet loss. (b) Batch hard triplet loss. (c) Margin sample mining loss.
(d) Proposed loss
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From Fig. 9 we can see that deep learning based methods are the top performers. In a
contrast, conventional methods suffer from limitation in generalization, with a clearly weaker
ability in dealing with buttons with random pattern, strong reflection or transparency.

From Table 4 we can see that the proposed method achieves better performances on almost
all the experimental sample sets, except sample 2 and sample 4 where our method is slightly
lower in accuracy than MSML and BHTL. More specifically, our loss function improves
accuracies for button samples characterized by random patterns (sample 1) and strong reflec-
tion (sample 5 and 6). Our method focusses on intra-class distance, therefore for sample 1,5
and 6, the network will cluster the positive samples regardless of the various distribution of
illumination or random patterns. In general, the proposed loss function is more effective,
especially for the transparent and reflective samples.

We visualize distribution of sample 6 with features extracted by different loss functions in
Fig. 10. Sample 6 is a typical example because of strong reflective surface and a variety of
defects. The visualization of high dimensional data is realized by t-SNE method.

Table 5 Result with different ratio between defect-free and defect

Sample 1 CNN Triplet BHTL MSML Proposed

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR

4:1 0.986 0.943 0.986 0.965 0.977 0.971 0.986 0.979 0.986 0.986
10:1 0.991 0.915 0.991 0.951 0.986 0.944 0.986 0.958 0.971 0.981
20:1 0.991 0.880 0.991 0.930 0.986 0.923 0.977 0.951 0.986 0.971
40:1 0.995 0.845 0.981 0.916 0.981 0.894 0.977 0.930 0.986 0.958
Sample 2 CNN Triplet BHTL MSML Proposed

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR
4:1 0.962 0.939 0.986 0.964 0.986 0.974 0.978 0.987 0.981 0.980
10:1 0.976 0.872 0.986 0.959 0.986 0.969 0.978 0.979 0.976 0.979
20:1 0.981 0.855 0.986 0.944 0.986 0.964 0.978 0.979 0.976 0.974
40:1 0.986 0.786 0.978 0.929 0.986 0.954 0.971 0.969 0.981 0.964
Sample 3 CNN Triplet BHTL MSML Proposed

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR
4:1 0.970 0.954 0.985 0.985 0.985 0.992 0.985 0.992 0.985 0.992
10:1 0.985 0.924 0.985 0.969 0.980 0.985 0.975 0.985 0.985 0.977
20:1 0.985 0.908 0.980 0.954 0.975 0.969 0.975 0.977 0.975 0.969
40:1 0.995 0.893 0.980 0.939 0.975 0.962 0.970 0.969 0.970 0.962
Sample 4 CNN Triplet BHTL MSML Proposed

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR
4:1 0.972 0.954 0.990 0.978 0.990 0.993 0.990 0.985 0.985 0.993
10:1 0.979 0.918 0.980 0.970 0.985 0.978 0.985 0.978 0.985 0.985
20:1 0.985 0.903 0.985 0.955 0.980 0.970 0.989 0.963 0.989 0.978
40:1 1.000 0.866 0.985 0.940 0.980 0.955 0.980 0.948 0.985 0.963
Sample 5 CNN Triplet BHTL MSML Proposed

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR
4:1 0.960 0.953 0.981 0.953 0.979 0.971 0.964 0.975 0.985 0.985
10:1 0.966 0.928 0.986 0.942 0.971 0.964 0.979 0.971 0.986 0.978
20:1 0.984 0.891 0.981 0.927 0.971 0.946 0.971 0.957 0.979 0.960
40:1 0.986 0.851 0.986 0.902 0.971 0.921 0.971 0.931 0.979 0.953
Sample 6 CNN Triplet BHTL MSML Proposed

TPR TNR TPR TNR TPR TNR TPR TNR TPR TNR
4:1 0.981 0.947 0.981 0.941 0.989 0.979 0.989 0.957 0.989 0.973
10:1 0.977 0.894 0.986 0.931 0.971 0.973 0.977 0.947 0.989 0.968
20:1 0.989 0.856 0.981 0.915 0.971 0.957 0.983 0.931 0.977 0.968
40:1 0.989 0.824 0.989 0.894 0.971 0.926 0.983 0.904 0.971 0.952
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From Fig. 10 we can see that all the loss functions above work in consistence with
our assumption that positive samples cluster within a certain space and the negatives
scatter somewhere. Moreover, Fig. 10 demonstrates that the features extracted by our
method have higher cohesion and lower coupling distribution. This is because in our
work, we constrain the positive points near the center point leading to a small intra-
variance.

4.3 Performance evaluation with limited defect samples

In practical applications, defect samples are much fewer than defect-free samples. To
explore the potential robustness of the methods and simulate the case of varying degrees
of scarcity of defect samples, we select four ratios between defect-free samples and
defect samples in the training set as 4:1, 10:1, 20:1 and 40:1 by reducing the number of
defective samples to train our model. We evaluate the results by TPR and TNR and the
details are shown in Table 4.

Fig. 11 Result of TNR with reduction of defect samples
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As we can see in Table 5 and Fig. 11, the reduction of defect sample has small effect on
TPR, while the TNR value has dropped to varying degrees as the imbal-ance ratio increases.
Therefore, in the following discussion we mainly focus on the TNR value.

The performances of similarity metric based methods are relatively stable compared to that
of CNN with cross entropy loss, which drops rapidly even to the extent of losing efficacy on
detection when dealing with various defect types. In terms of the overall ability in resistance to
the change of imbalance ratio, our method performs better for the consideration of both inter-
class distance and intra-class distance, particularly for sample 5 and 6 with complicated surface
for their strong reflective characteristic and various defects. While the TNR of Triplet, BHTL,
MSML decreases rapidly as the imbalance ratio changes, our method remains a high precision
over 95% throughout.

Fig. 12 ROC curve of sample 6

Table 6 Details of time consuming

Operation Strategies Time consuming Speed enhance

op1 2693 ms 1.0
op2 Strategy 1 408 ms 6.6
op3 Strategies 1 + 2 301 ms 8.9
op4 Strategies 1 + 2 + 3 + 4 258 ms 10.4
op5 Strategies 1 + 2 + 3 + 4 + 5 + 6 156 ms 17.3
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Taking sample 6 as an example, we evaluate the results by ROC and AUC, as is shown in
Fig. 12. Our method has a larger AUC value than other methods, and with the reduction of
defect samples, the ROC curve changes within a small extent.

We conclude that our method can deal with the detection task with fewer defect samples,
and it is more robust in our task. However, defect samples are still necessary. If the defect
samples are too rare, it is still difficult to detect defects of complicated surface. In this case, the
defect detection task remains to be researched on in the future.

4.4 Online detection in DSP

CNN requires a huge amount of calculation, and is usually implemented on GPU platform. For
online detection on production, detection based on the embedded machine vision system has
been widely used. However, it is hard to run a CNN model on embedded platform without
optimizing, because of a large sum of floating-point arithmetic, which has become the
bottleneck of online detection. Therefore, we optimize the calculation in the embedded system.
In this paper, the embedded platform is TMS320DM6437, which is a fixed-point DSP with the
performance of up to 5600 million instructions per second (MIPS) at a clock rate of 594 MHz.

To accelerate computation speed, several strategies are used for optimizing, which are as
follows.

& Strategy 1: Converting floating-point data into fixed-point data, enabling SIMD (Single
instruction multiple data) instructions.

& Strategy 2: Convert convolution to matrix multiplication [6].
& Strategy 3: Using proper compiler options.

Fig. 13 The influence of different optimization operations on the running time

Table 7 Time consuming of each processing phase

Preprocess Feature extraction SVDD classifier Total

Before optimizing 353 ms 2232 ms 108 ms 2693 ms
After optimizing. 60 ms 72 ms 27 ms 159 ms
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& Strategy 4: Using some keywords like restrict and const.
& Strategy 5: Using RAM and Cache.
& Strategy 6: Using intrinsic operations and optimized libraries.

Table 6 and Fig. 13 show the impact of different optimization strategies on the speed of the
algorithm. Strategy 1 has the greatest increase in speed. DM6437 is a fix-point processor so
that fixed-point operations are much faster than floating-point operations. Converting floating-
point data to fixed-point data is conducive to the software pipeline and SIMD instruction.

After optimizing, the time consuming of each computing unit is as shown in Table 7.
Our final detection speed is 6 fps, 17.3 times faster than that before optimiza-tion, which is

applicable for online case.

5 Conclusion

In this paper, we propose a Siamese Network based method to deal with button surface defect
detection problem with imbalance issue caused by limited defect samples. In the system, we
design a new loss function for the network and use SVDD method for classification. This
method is implemented in a practical ma-chine-vision-based system. Our method achieves
appealing performance in detection of multiple types of defects, even with limited defect
samples. On an embedded DSP platform with 594 MHz frequency, this method can reach the
detection speed of 6 fps, which guarantees online detection.

Although the results of the proposed method are only demonstrated for the button, the
method can potentially be used for other products.
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