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Fabric defect detection plays an important role in the textile production process, but there are still some
challenges in detecting defects rapidly and accurately. In this paper, we propose a powerful detection
method for automatic fabric defect detection using a deep convolutional neural network (CNN). It consists of
three main steps. First, the fabric image is decomposed into local patches and each local patch is labelled.
Then the labelled patches are transmitted to the pretrained deep CNN for transfer learning. Finally, defects
are detected during the inspection phase by sliding over the whole image using the trained model, and the
category and position of each defect is obtained. The proposed method is validated on two public and one
self-made fabric database. The experimental results demonstrate that our method significantly outperforms
selected state-of-the art methods in terms of both quality and robustness.
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Introduction
Because of yarn problems, improper operation and over-
stretch, various defects can be formed on the surface of
fabrics. To date, the textile industry has defined more than
70 types of fabric defects [1]. Figure 1 shows six kinds of
common defects. According to statistics, if there are defects
in fabric then the price is reduced by 45–65% [2]. Therefore,
fabric defect detection is an essential step for quality control
in textile manufacturing. The traditional method is to detect
defects via human vision, which can help workers to repair
minor defects immediately. But the efficiency of manual
detection can reduce gradually with increases in working
time. Thus, it is necessary to develop an automatic
inspection system for fabric defects to improve the quality
of fabric, and to reduce human labour costs and errors.

Over the years, in targeting fabrics with a homogeneous
texture structure [3] such as plain weave [4], twill [5] and
leather fabric [6], researchers have proposed many meth-
ods, including auto-correlation function (AF) [7,8], local
binary pattern (LBP) [9], Fourier transform (FT) [10,11],
wavelet transform (WT) [5,12] and neural networks [13,14],
to solve these fabric defect detection problems. These
methods were used to detect defects at the image level, so it
is difficult to locate the defects accurately. Therefore, they
cannot be extended to other types of fabrics. Recently,
some other algorithms based on local image level [15,16]
have been proposed, which use the minimum unit as the
basic operation object to extract image features. The
similarity measurement between the images being detected
and the template image are computed, and then the

threshold value is given to achieve the defect detection.
However, this often takes more time because of the process
of computing AF.

In this study, we introduce a novel defect detection
algorithm which can deal with different types of defects.
Our method does not consider the original image as a basic
operation unit [17]. Instead, the local image patches are used
in the training phase, while the whole fabric image is used
during the test phase [patches training and image testing
(PTIT)]. First, the Mixed National Institute of Standards and
Technology (MNIST) [18] dataset is used to pretrain the
proposed model and save the model parameters, which are
used as initialisation parameters of our network to avoid
overfitting caused by small-scale fabric samples. Second, the
fabric image is decomposed into multiple repeat units (RUs)
and the label of defect class is givenmanually. Thepretrained
model parameters are loaded and the labelled fabric data are
fed into the network to fine-tune the parameters, thereby
accelerating and optimising the learning efficiency of the
model. Finally, defects are detected during image inspection
by sliding on the image to test local patches using the learned
model. Experimental results showed that our method is
better than the selected state-of-the-art methods.

The remainder of this paper is organised as follows. Next,
we present a brief literature review of fabric defect detection
methods. Then we propose our method for automatic defect
detection, which includes the automatic calculating of the
fabric surface period and the proposed network model. This
is followed by a description of the three datasets that are
used for evaluation. Finally, results and discussion are
followed by conclusions.

(a) (b) (c) (d) (e) (f)

Figure 1 There are six kinds of common types of defects: (a) Stain, (b) Hole, (c) Carrying, (d) Knot, (e) BrokenEnd, and (f) NettingMultiple
[Colour figure can be viewed at wileyonlinelibrary.com]
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Review of previous work
Most of the existing work on fabric inspection is mainly
focused on homogeneous fabrics [3,19], including plain and
twill fabrics. These methods can be classified into four main
categories: (i) statistical; (ii) spectral; (iii) model-based; and
(iv) learning-based approaches.

In statistical approaches, the AF and the co-occurrence
matrix (CM) [15,20] have been successfully applied to
detect defects. Zhu et al. [15] combined the AF and the grey
level co-occurrence matrix (GLCM) methods to detect yarn-
dyed fabric defects. The AF helps to determine the size of
the template image. GLCM can represent characteristics of
an image, such as the contrast, correlation, energy and
entropy. Latif-Amet et al. [20] have applied CM analysis in
the wavelet domain to detect defects. However, these
methods are time-consuming.

Spectral approaches are widely used to defect detection,
and these include the FT [10,11] and the WT [5,21–23].
Wood [8] applied Fourier masks to restrain low- or high-
frequency components in an image, enhancing the texture
in the image and measuring the roughness of the defective
carpet. Guo et al. [24] and Campbell et al. [25] used the FT
to detect defects in woven fabrics and saliency detection,
respectively. The disadvantage of using FT is the lack of
local information in the spatial domain and the insensitivity
towards small defects. Contrary to FT, Gabor filters and the
WT utilise a spatial frequency analysis, which realises the
detection of local defects [16]. Ngan et al. [23] used the WT
to automatically detect defects on patterned fabric with an
accuracy of 96.7%.

Model-based methods are used to solve the defect
detection problem by assuming that the texture obeys a
particular distribution model and that the model’s param-
eters are estimated [16,26]. Yapi et al. [16] and Allili et al.
[27] divided the image into elementary repetitive units and
simulated the distribution of redundant contourlet trans-
form (RCT) coefficients using a finite mixture of a gener-
alised Gaussian model. These methods can deal with
various types of textile fabrics. But they are also more
time-consuming. Cohen et al. [26] used Gaussian Markov
fields (GMFs) to model defect-free texture on fabric images;
however, they are inefficient in detecting minor defects.

Learning-based approaches are also popular in detecting
defects, using labelled samples to train classifiers that
distinguish between defective and non-defective samples.
Convolutional networks have good fault tolerance, parallel
processing capabilities, generalisation capabilities, and
self-learning capabilities that can handle complex envi-
ronmental information issues. Since the early 2000s, with
the rapid development of big data and artificial intelli-
gence, convolutional networks have been applied with
great success to the detection, segmentation [28] and
recognition [29] of objects and regions in images, espe-
cially in tasks with a large number of labelled samples,
such as rail surfaces [30], industrial images [31], traffic
sign recognition [32], face detection [33] and natural
language processing [34–37]. Jing et al. [38] established a
deep convolution neural network based on the character-
istics of yarn-dyed fabric to achieve defect classification,
and then used the Meanshift algorithm to segment defects
and locate defect locations. This method is good at dealing

with yarn-dyed fabric of complex textures, and the
detection time of the algorithm is relatively short; further-
more, it can realise real-time defect detection. Ren et al.
[39] used feature transferring to extract the features of the
images for the detection tasks with small samples. The
Felzenszwalb’s segmentation [40] is applied to accurately
locate the size and location of defects in the heatmaps, but
it incurs a huge computation time to generate heatmaps.

PTIP method
Here, details of the PTIP method are presented. Our
proposed method consists of three main basic steps. In
the first step, we use the MNIST [18] dataset to pretrain our
proposed model and save the parameters (weight, bias) of
the optimal model as the initial parameters of the network.
The second step consists of decomposing the image into
local RUs, marking the corresponding defect categories, and
fine-tuning the parameters of the model. In the final step,
the trained model slides on the original image to detect each
block.

Automatically calculating the patch size
By using the features of distance matching function
(DMF), the period of the fabric image can be accurately
and automatically calculated. We set the size of the
period to patch size and decompose the image into
multiple patches according to patch size, which can
increase the training dataset at multiple levels and
improve the precision of defect detection. Oh et al. [17]
put forward a one-dimensional DMF k(d) to calculate the
periodic distance, which can be calculated with DMF as
Eqn (1):

kðdÞ ¼
XN�d

i¼1

½f ðiÞ � f ðiþ dÞ�2 ð1Þ

where d 2 (0, N�1) represents periodic distance of one-
dimensional function k(d) and N represents the length of
the signal. When parameter d is the period of function f(i),
the difference between function f(i) and f(i + d) is at its
smallest.

Fabric can be considered as a two-dimensional (2D)
function [1]. The size of function f(x, y) corresponds to
M 9 N size. The DMF of row r and column c are defined as
follows:

krðdÞ ¼
XN�d

i¼1

½f ðr; iÞ � f ðr; iþ dÞ�2 ð2Þ

kcðdÞ ¼
XM�d

i¼1

½f ði; cÞ � f ðiþ d; cÞ�2 ð3Þ

where d 2 (0, N�1) represents the periodic distance of 2D
function k(d).

For 2D image function f(x, y), the resultant difference
between d and d + 1 of DMF is defined as the first forward
difference ΔΛr(d). The resultant difference between d and
d�1 of DMF is defined as the first forward difference
DΛr(d�1). The first forward difference of DMF in the
vertical direction is defined as follows [41]:
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(a) (b) (c)

Figure 2 Using the second forward difference of DMF to calculate
the patch size of fabric images: (a) box-patterned fabric, (b) dot-
patterned fabric, and (c) star-patterned fabric

(a) (b) (c)

Figure 3 Manual labelling category diagram: (a) original image; (b)
three defective patches in the original image; and (c) defect-free
patches in the original image

(a) (b)

Figure 4 Manually filtered categories of patches: (a) Carrying and
(b) Knots [Colour figure can be viewed at wileyonlinelibrary.com]

DKrðdÞ ¼ Krðdþ 1Þ � KrðdÞ ð4Þ

DKrðd� 1Þ ¼ KrðdÞ � Krðd� 1Þ ð5Þ
The second forward difference of the fabric image in the

vertical direction is defined as follows:

D2KrðdÞ ¼ DKrðdÞ � DKrðd� 1Þ ð6Þ
The value of the independent parameter d is considered

as the period of the fabric in the vertical direction when the
maximum value of the second forward difference is
obtained.

Similarly, the first forward difference and the second
forward difference of DMF in the horizontal direction are
given in Eqns (7–9). The period of the fabric (patch size) can
be accurately calculated using the second forward differ-
ence of DMF, and the result is shown in Figure 2.

DKcðdÞ ¼ Kcðdþ 1Þ � KcðdÞ ð7Þ

DKcðd� 1Þ ¼ KcðdÞ � Kcðd� 1Þ ð8Þ

D2KcðdÞ ¼ DKcðdÞ � DKcðd� 1Þ ð9Þ

Manual labelling category
After the original image is decomposed into numerous
patches, it is necessary to manually separate the defective
and defect-free patches. For example, a defective fabric
image produces at least two kinds of patches after decom-
position, namely defective patches and defect-free patches.
And the number of defect-free patches is much larger than
the number of defective patches, as shown in Figure 3.
Therefore, the category of the input image cannot be used
directly as the output category of the convolution network;
on the contrary, the category of the convolution network

output is determined according to the category in the
patches.

As shown in Figure 4b, the Knots defect image contains
a defect patch of the Carrying type. The purpose of manual
sorting is to classify the same defect patches in different
original defect images into one class, as shown in the blue
box in Figure 4; the yellow box is the Knots class. To
prevent overfitting, following [42–44], we augment the
number of defective patches through 90°, 180° and 270°
rotations of the existing data. The patches are shuffled
randomly and split into training (70%) and testing (30%).
In each category, the ratio of non-defective sub-blocks to
defective sub-blocks is 3:2. To prevent overfitting, one
strategy is to add the dropout layer and set the corre-
sponding weight values of the neurons to 0 with a
predefined specific probability. With the dropout strategy,
the performance of the model can be enhanced by
performing a more effective training process for more
accurate predictions.

Convolutional neural network
Convolutional neural networks (CNNs) are multilayer neu-
ral networks which are skilled in dealing with related
machine learning problems, especially large-scale image
classification tasks. During the training process of CNNs,
the features of the input images can be extracted layer by
layer, and the features information of the defect is finally
obtained via feature fusion. A typical CNN normally
consists of three parts: the convolutional layer, the pooling
layer, and the fully connected layer.

Convolution is the core of the CNN, and uses multiple
convolution kernels to traverse the input image to obtain
the corresponding feature map. Supposing that the weight
of filter isW, s denotes the stride of filter, p 9 q is the size of
filter, b is the bias of filter, x represents the patch of size
m 9 n on the input image, r is the activation function, and
the size of the input image is M 9 N. Then the convolution
operation is defined as:

f ¼ rðWx þ bÞ ð10Þ

After the convolution operation, the size of the output

image is M�p
s

j k
þ 1

h i
� N�q

s

j k
þ 1

h i
, where ⌊ ⌋ is the ceiling

function.
The pooling layer is usually applied to compress the

feature map and to extract the main features, which
simplifies the complexity of network computation and
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avoids overfitting problems. There are generally two kinds
of pooling operation, one is Avy pooling, and the other is
Max pooling. Max pooling is extensively used because it
can reduce the error caused by mean shift.

The fully connected layer connects all the features and
sends the output values to the classifier, such as the softmax
classifier. A typical deep CNN (DCNN) usually consists of
several rounds of convolutional and pooling layers, finally
followed by fully connected layers.

Network model
DCNNs are good at learning from high dimensional data,
but often require huge amounts of labelled examples for
training. For tasks with fewer labelled samples, training
DCNNs from scratch can easily result in model overfitting.
However, several researchers trained DCNNs with large-
scale labelled data and applied trained weights as the
feature extractors for smaller datasets in another field.
Transfer learning can greatly improve the learning perfor-
mance, especially when only a few datasets are available in
a target domain [45,46].

The fabric has a strong structure of texture on the surface.
If there is a defect on the fabric, it will break the structure of
the texture. Compared with other methods, our method
does not directly use the original image as the input.
Instead, we use multiple RUs along the inherent period of
the fabric surface by dividing the fabric image. Therefore,
the network model proposed in this paper is similar to the
LeNet-5 [47] model, but the number of feature maps per
layer is increased so that the model can learn enough
features and use two full connected layers to reduce the
trainable parameters in the model.

The proposed model structure is shown in Figure 5. It
contains five learned layers, including three convolutional

and two fully connected layers. In this model, the input
images are of size 28 9 28 pixels with grey channels. The
three convolution layers are filtered by a 3 9 3 kernel to
achieve the goal of increasing non-linearity and reducing
parameters. Each convolution layer has 16, 32 and 63
kernels, respectively.

With the deepening of the network, the input distribution
of each layer gradually shifts to the upper and lower ends of
the value range of the non-linear function. In backward
propagation, it may cause the gradient of the low-level
neural network to disappear. The batch normalisation (BN)
[48] layer is added between the convolution layer. Its
function is to keep the input of each layer of neural
networks at the same distribution during deep neural
network training, so that the gradient becomes larger to
avoid the problem of gradient disappearance.

The ReLU activation function is used to enhance the non-
linearity of the network and avoid the problem of subse-
quent gradient disappearance. The ReLU function is used as
the activation function after each convolution layer, except
for the fifth fully connected layer in this model. The fourth
layer is the fully connected layer, and its neurons are
connected to all the neurons in the previous layer with 2048
neurons. The fifth fully connected layer has as many
neurons as the number of classes in the MNIST dataset used
in the pretraining process. Pretraining the model on the
MNIST dataset, the classification accuracy is 98.43%, and
the trained parameters are set as initialisation parameters
for training fabric data.

Dataset
A wide range of fabrics data with different textures were
selected to demonstrate the accuracy of our method. These

Conv-BN
Full connection

Full connection

C1:fea maps
16@28 x 28

Subsampling

S1:fea maps
16@14 x 14

Conv-BN

C2:fea maps
32@14 x 14 S2:fea maps

32@7 x 7

Subsampling Conv-BN

C3:fea maps
64@7 x 7

F4:2048

Output
10

Input
28 x 28

Figure 5 Architecture of a deep convolutional neural network. Each layer is based on four processing steps, namely, convolution (Conv),
batch normalisation (BN), non-linear activation (not shown) and feature pooling for dimension reduction

(a) (b) (c) (d) (e) (f)

Figure 6 Some typical images in the TILDA database: (a) Non-defective, (b) Holes, (c) Carrying, (d) Scratch, (e) Stain, and (f) Knots
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data include the white grey fabric in the TILDA database,
homemade dark red fabric, and patterned texture fabric.

TILDA database
TILDA is a textile texture database, which includes eight
kinds of representative textile categories. Based on the
analysis of textile atlases, seven error classes and a correct
class are defined. In the TILDA database, we chose 300
texture images which are divided into six classes (Non-
defective, Holes, Carrying, Scratch, Stain, and Knots), and
each class contains 50 samples. The size of the original
image is 256 9 256 pixels, and some typical images are
shown in Figure 6.

Dark red fabric
The dark red fabric is created by using the yarn-dyed fabric
images collected from Guangdong Esquel Textiles (Guang-
dong Sheng, China). By manually sorting four classes
(Carrying, Thin Bar, Knots, and Fuzz Balls), each class
contains 30 samples. The representative samples for each
class are shown in Figure 7.

Patterned texture fabric (regular patterned fabric)
The fabrics (box-patterned fabric, dot-patterned fabric, and
star-patterned fabric) in the patterned fabric database
consist of three different textures, which contain six types
of fabric defect. Figure 8 shows some typical defect images.
This fabric database is derived from Henry Y. T. Ngan
(Industrial Automation Research Laboratory, Dept. of Elec-
trical and Electronic Engineering, University of Hong Kong).

Experimental results
To evaluate the performance of our method, we compared
the results of manual design features, transfer learning, and
the proposed method for the three fabric databases.

Methods of manually designed features include GLCM
[15], LBP [9] and RCT [16]. Models for transfer learning
include LeNet-5, AlexNet [49] and VGG16 [50]. The
processor is Intel (R) Core (TM) i5 – 4460 CPU @
3.20 GHz, RAM 8.00 GB. The graphics card type is NVIDIA
GeForce GTX 745. MATLAB2017b software is used to
implement the proposed algorithm.

The GLCM contains many features such as energy,
contrast, correlation, entropy, and inverse difference
moment. According to [15], the greyscale of the image
(Ng), inter-pixel distance (d) and inter-pixel orientation (h)
are Ng = 16, d = 3 and h = 0°, respectively. LBP is an
operator used to describe the local texture features of
images. It has the merit of rotation invariance and grayscale
invariance. According to [9], the LBP mask is set at 7 9 7
pixels, and the detection window is set at 16 9 16.
Multiscale redundant contourlet decomposition can
describe the local directional and structural properties of
the fabric texture. According to [16], the RCT selects four
directions and three levels.

Accuracy of the TILDA database
The fabric image of the C1 group in the TILDA database
belongs to fabrics of the plain that form a tiny patch.
Therefore, the patch size calculated by DMF cannot be
directly used as the object of feature extraction. We have
fixed the patch size to 28 9 28 pixels. In the transfer-
learning stage, 645 defective patches and 430 defect-free
patches are chosen for each category of fabric image. In the
test phase, 10 original images are generated to patches.
The program runs 10 times and reports average accuracy.
The training accuracy of the TILDA database is 97.48%.

The test results are shown in Figure 9. Considering all
the methods, the method of transfer learning is superior to
the method of manually designed features, and our

(a) (b) (c) (d)

Figure 7 The representative samples for each class: (a) Carrying, (b) Thin Bar, (c) Knots, and (d) Fuzz Balls [Colour figure can be viewed at
wileyonlinelibrary.com]

(a) (b) (c) (d) (e) (f)

Figure 8 The typical pattern fabric samples: (a) BrokenEnd, (b) Hole, (c) Knot, (d) NettingMultiple, (e) Thick Bar, and (f) Think Bar
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proposed method exhibits the best performance for this
database.

Accuracy of dark red fabric
The dark red fabric image has a homogeneous texture on the
image surface; the patch size calculated by DMF is 18 9 18
pixels, as shown by the black box in Figure 10a. If the
18 9 18 pixels patch size is used to divide the image
directly, it is necessary to ensure that there is no rotation of
the original image. Otherwise the information contained in
the patch would change significantly compared with the
previous patch, as shown in Figure 10b.

In a practical industrial environment, the images col-
lected through the camera would have a small angle, so it is
almost impossible to ensure that there is no rotation of the
image. To improve the robustness of the algorithm, the
patch size of the dark red fabric is set at 32 9 32 pixels, as
shown by the white box in Figure 10a; the experimental
results are as shown in Figure 11. The training accuracy of
dark red fabric is 98.62%.

The test results show that our proposed method can
achieve high accuracy with 97.56%. It outperforms tradi-
tional classification (GLCM, RCT and LBP) and other meth-
ods of transfer learning methods (LeNet, AlexNet and VGG).

(a) (b)

Figure 10 The patch size of dark red fabric. (a) The white box is a 32 9 32 patch, and the black box is an 18 9 18 patch; (b) 18 9 18 patch
when the original image is rotated 5° [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 11 The test accuracy of seven methods on dark red fabric.
The accuracy of the proposed method is 97.56% [Colour figure can
be viewed at wileyonlinelibrary.com]
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Figure 9 The test accuracy of seven methods on the TILDA
database. The test accuracy of the proposed method is 97.20%
[Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 12 The test accuracy of seven methods on patterned fabric.
For box-patterned fabric, the test accuracy of the proposed method
is 95.93%. For dot-patterned fabric, the test accuracy of the
proposed method is 98.01%. For star-patterned fabric, the test
accuracy of the proposed method is 96.52% [Colour figure can be
viewed at wileyonlinelibrary.com]
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Patterned fabric database
The patch sizes of the box-patterned fabric, the dot-
patterned fabric and the star-patterned fabric calculated
by DMF are 25 9 25, 27 9 37 and 17 9 21 pixels, respec-
tively. The patch size of the star-patterned fabric is 48 9 48
pixels. The training accuracy of the box-patterned, dot-
patterned and star-patterned fabric is 95.58, 98.40 and
96.89%, respectively.

From the experimental results shown in Figure 12, it can
be seen that our proposed method exhibits the best perfor-
mance for all three patterned texture fabrics. The red, green
and blue lines indicate the accuracy of box-patterned, dot-
patterned and star-patterned fabrics, respectively.

Evaluation of accuracy
Unlike most of the existing defect detection methods, our
method uses the local patch as the input to the network, so
therefore we should evaluate the performance of the model
at the local level. The performance evaluation is described
in [16].

In order to evaluate the performance of the model for
defect location, Yapi et al. [16] proposed metrics at the local

level, which are local precision (PL), local recall (RL) and
local accuracy (ACCL), defined as follows:

PL ¼ TPL

TPL þ FPL
� 100% ð11Þ

RL ¼ TPL

TPL þ FNL
� 100% ð12Þ

ACCL ¼ 2� PL � RL

PL þ RL
� 100% ð13Þ

where TPL is true-positive, FPL is false-positive, TNL is true-
negative, FNL is false-negative, and ACCL is the harmonic
mean of PL and RL.

Parameter selection
Parameters for the model
Table 1 shows the different parameter settings in our model.
In Table 1,Model-1 toModel-3 represent the settings of three
models with different parameters, in which the convolution
kernel size is 3 9 3 pixels, the activation function is ReLU,
and a final layer uses a standard fully connected (FC) layer
with one hidden layer. Model-4 has the same convolution

Table 1 Parameter settings of the deep convolutional neural network model and performance on MNIST

Model-1 Model-2 Model-3 (proposed) Model-4

Conv1 Kernel size = 3
Feature Map = 16
Stride = 1
Padding Size = 1
Activation = ReLU

Kernel size = 3
Feature Map = 16
Stride = 1
Padding Size = 1
Activation = ReLU

Kernel size = 3
Feature Map = 16
Stride = 1
Padding Size = 1
Activation = ReLU

Kernel size = 3
Feature Map = 16
Stride = 1
Padding Size = 1
Activation = ReLU

Sub2 Max Pooling = 2 Max Pooling = 2 Max Pooling = 2 Max Pooling = 2
Conv3 – Kernel size = 3

Feature Map = 32
Stride = 1
Padding Size = 1
Activation = ReLU

Kernel size = 3
Feature Map = 32
Stride = 1
Padding Size = 1
Activation = ReLU

Kernel size = 3
Feature Map = 32
Stride = 1
Padding Size = 1
Activation = ReLU

Sub 4 – Max Pooling = 2 Max Pooling = 2 Max Pooling = 2
Conv5 – – Kernel size = 3

Feature Map = 64
Stride = 1
Padding Size = 1
Activation = ReLU

Kernel size = 3
Feature Map = 64
Stride = 1
Padding Size = 1
Activation = ReLU

F6 1024 (2048) 1024 (2048) 1024 (2048) 2048
F7 10 10 10 1024 (2048)
F8 – – – 10
Max accuracy (%) 96.57 (95.85) 85.99 (91.05) 97.85 (98.43) 70.04 (76.13)
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Figure 13 The accuracy of three kinds of fabrics with different patch sizes: (a) the fabric image of the C1 group; (b) dark red fabric; and (c)
star-patterned fabric [Colour figure can be viewed at wileyonlinelibrary.com]
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layer as Model-3, while Model-4 has two hidden layers. The
last row shows the performance of the four models on the
MNIST dataset, and that Model-3 is superior to the other two
models with 98.43% accuracy. Therefore, Model-3 is the
structure proposed in our paper and its parameters are saved
as the initialisation parameters of training fabric data, while
preparing for the next stage of fabric data training.

Model-1achievedanaccuracyof96.57%and95.85%onthe
fully connected layers with 1024 neurons and 2048 neurons,
respectively. However, Model-1 has a large generalisation
error during the test phase, for which there is a serious
overfitting phenomenon in the network. From Model-2 to
Model-3, the accuracy increases with the number of convo-
lution layers and the number of neurons in the FC layer. The

Figure 14 The fabric defect inspection results for the fabric image of the C1 group, dark red fabric, box-patterned fabric, dot-patterned fabric
and star-patterned fabric, from the first to the fifth row [Colour figure can be viewed at wileyonlinelibrary.com]

Jing et al. Fabric defect detection

220 © 2019 The Authors. Coloration Technology © 2019 Society of Dyers and Colourists, Color. Technol., 135, 213–223



maximumaccuracy is98.43%whenthereare2048neurons in
the FC layer (As shown in bold in Table 1). At the same time,
Model-4 adds one layer of FC layer based onModel-3, and the
accuracy rate is only 76.13%,which indicates that theMNIST
dataset is insufficient to train the parameters in Model-4.

As reported in Table 1, if the model complexity is too low
for the given dataset, there is a high probability that the
overfitting phenomenon will occur. Conversely, the under-
fitting phenomenon may occur. The number of neurons in
the full connection layer is not as large as possible.
Generally, the value is 2n in the condition, which is less
than the output of the previous layer.

Patch size selection
For regular patterned fabrics, the texture cycle of the fabric
surface can be automatically and accurately calculated by
DMF, which automatically determines the patch size.
However, for plain weave and twill weave fabrics with the
smaller period (e.g. the fabric image of C1 group, dark red
fabric, and star-patterned fabric), if we directly use the
patch size calculated by DMF as the period to divide the
image, the texture information contained in the patch will
be insufficient. It will ultimately affect the accuracy of the
detection result. Given the three types of fabric mentioned
above, the patch size is set by hand to train the model, and
the accuracy of multiple different patch size models is
tested. The experimental results are shown in Figure 13.

The selection of the patch size depends on the size of
defect. The results show that if the value of the patch size is
too small, i.e. 20 9 20 pixels and 17 9 21 pixels, which
might not include enough information for the defect, the
network cannot learn the proper characteristics. If the value
of the patch size is too large, i.e. 48 9 48 pixels and
68 9 68 pixels, the patch might contain too much redun-
dant information, which may reduce the performance of the
classification and location. The principle of selecting patch
size is to ensure that each patch includes at least one
complete texture period. Therefore, choosing the appropri-
ate patch size is a crucial step in the proposed method.

Results and Discussion
We have compared our method with other methods
including GLCM, RCT, LBP, LeNet, AlexNet and VGG16
in the same fabric database. The GLCM method often needs
to manually set the threshold between the template image
and the image, and it is easy to fall into the dimension
disaster in the process of computing the Euclidean distance.
The statistical characteristics of the fabric image are
obtained by fitting the coefficients of RCT using a finite
mixture of a generalised Gaussian model, which has
invariance to fabric translation and scale changes. The

Table 2 The test accuracy of seven methods on three fabric
databases

TILDA YIDA BOX DOT STAR Avg-ACC

GLCM
PL (%) 90.07 93.05 93.54 91.35 92.49 92.10
RL (%) 93.13 95.94 90.22 91.79 89.61
ACCL (%) 91.57 94.47 91.85 91.57 91.03

RCT
PL (%) 97.50 96.69 89.52 92.58 88.46 92.65
RL (%) 95.32 92.08 91.20 89.85 96.49
ACCL (%) 96.40 94.33 90.35 89.85 92.30

LBP
PL (%) 95.39 89.77 94.06 93.45 90.66 92.33
RL (%) 91.48 92.66 93.10 91.27 91.62
ACCL (%) 93.39 91.19 93.58 92.35 91.14

LeNet-5
PL (%) 89.53 97.34 93.89 94.67 93.54 93.83
RL (%) 98.52 90.63 93.01 89.52 98.60
ACCL (%) 93.81 93.87 93.45 92.02 96.00

AlexNet
PL (%) 94.37 96.27 90.74 93.87 91.86 94.10
RL (%) 96.40 95.41 96.36 90.67 95.03
ACCL (%) 95.56 95.84 93.47 92.24 93.42

VGG16
PL (%) 97.15 97.75 98.34 96.86 95.63 96.03
RL (%) 95.62 95.24 90.48 94.86 96.78
ACCL (%) 96.38 96.48 94.25 95.85 96.20

Proposed
PL (%) 96.04 96.19 96.86 96.42 94.85 97.31
RL (%) 98.39 98.97 95.02 99.65 98.25
ACCL (%) 97.20 97.56 95.93 98.01 96.52

Table 3 Trainable parameters in the deep convolutional neural
network

LeNet-5 AlexNet VGG16 Proposed

Parameters 61 772 56 876 418 134 281 029 3244 800

Table 4 Prediction time for seven methods and training time of 3000 iterations

GLCM RCT LBP LeNet-5 AlexNet VGG16 Proposed

Prediction on Central Processing Unit (CPU) (ms) 184 2090 465 23 287 3331 89
Prediction on Graphics Processing Unit (GPU) (ms) – – – 3 42.6 385 25
Training time (min) – – – 49 115 247 35

Table 5 The accuracy of using pretraining and not using
pretraining

No pretraining Pretraining

Training
accuracy
(%)

Test
accuracy
(%)

Training
accuracy
(%)

Test
accuracy
(%)

TILDA 86.35 75.17 97.48 97.20
Dark red fabric 89.34 68.60 98.62 97.56
Box-patterned fabric 79.62 60.45 95.58 95.93
Dot-patterned fabric 82.38 50.57 98.40 98.01
Star-patterned fabric 78.48 71.43 96.89 96.52
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disadvantage of this method is that the fitting process is
lengthy, which leads to the slow speed of the algorithm and
poor real-time performance. Similarly, the LBP operator can
also describe the texture information of the fabric, but the
number of the sampling points has a great influence on the
extraction and recognition of texture features.

AlexNet uses five convolutional layers and a large
number of feature maps to extract features of the input
image and map the features layer by layer to high dimen-
sions, making the features easier to distinguish. The average
accuracy on the five fabric images is 94.10%. The disad-
vantage of using AlexNet is that the input size of the net-
work is fixed to 227 9 227 pixels. It is necessary to
upsample the patch (size not exceeding 50 9 50) to
227 9 227 pixels in the preprocessing stage. This process
would lose a large amount of original information in the
image and affect the extraction and classification of the
features. VGG16 divides the network into five groups
(simulating the five layers of AlexNet), using only 3 9 3
convolution kernels, and combining them as a convolution
sequence for processing. The network is deeper and the
number of channels is larger. The innovation is the usage of
multiple 3 9 3 convolutions to simulate larger receptive
fields, which can make the convolution layer more non-
linear with fewer parameters. These ideas are also exten-
sively applied to subsequent network architectures such as
Inception [51] and ResNet [52]. However, its disadvantages
are the same as using AlexNet.

The performance of each algorithm is evaluated using the
PL, RL and ACCL in [16], and the location of defects is
marked on each test image (the result is shown in
Figure 14). The average accuracy of each method is shown
in Table 2. It is shown that the method of manually
designed features (e.g. GLCM, RCT and LBP) needs to
change the parameters in the feature extractor for different
types of fabrics. The range of ACC is between 89–93%. The
method of transfer learning is generally superior to tradi-
tional detection methods, and the range of ACC is between
93–98%. Among all the methods, the proposed method has
the highest average accuracy.

The complexity of our network model is between LeNet-5
and AlexNet. Compared with LeNet-5, the number of
convolution kernels per layer is increased, so that the
model can learn more features. The test result is 1.3–5.3%,
which is higher than that of LeNet-5. Compared with
AlexNet and VGG16, our method can achieve the highest
average accuracy, and the parameters of our model are less
and our model has better real-time capability. Table 3
shows the parameters of the deep CNN. Table 4 shows the
prediction time for each algorithm during the testing phase
and the time required for 3000 iterations. Table 5 shows the
results of both using and not using pretraining. In the case
of using pretraining, there is a larger gap between the
training results and the test results, and the highest result
for training accuracy is only 86.35%, indicating an obvious
overfitting phenomenon. On the contrary, we used the
method of pretraining, augmentation data and dropout to
combat overfitting, and achieved higher training accuracy
and test accuracy. The last line in Table 4 is the time
required for the four neural networks to iterate 3000 times.
Compared with the other three models, our model spends
less time in the training process.

In the manual design feature method, the GLCM algo-
rithm has the shortest computational time. LBP algorithms
traverse the whole image through a sliding window during
feature extraction, so it takes a longer computation time.
The 80% computation time of RCT’s method is used to fit a
mixture of a generalised Gaussian model.

In the method of transfer learning, the LeNet-5 model
has fewer parameters but also significantly lower accuracy
than our model. AlexNet and VGG contain multiple
convolutional layers and feature maps, so there are a large
number of parameters in the model. The number of
parameters of the proposed model is only 2% of the number
of the VGG parameter. It can satisfy the requirements of
high accuracy and real-time performance in industrial
inspection.

Conclusions
We proposed a new fabric defect detection algorithm which
can deal with various types of fabrics. Our method does not
directly use the original image as input. Instead, we divide
the fabric image into multiple patches along the inherent
period of the fabric surface, which is used as an operation
object to train deep CNN. Our algorithm achieved an
average accuracy of 97.31% for results on three datasets,
which can achieve accurate detection of common defects in
yarn-dyed fabric, such as Carrying, Thin Bar, Scratch,
Knots, BrokenEnd, Stain, and Holes. Compared with tradi-
tional shallow learning approaches, the experimental
results demonstrate that our proposed method can effec-
tively learn defect features by adaptively adjusting the
parameters. In addition, our method can improve efficiency,
shortening the time of measurement, and obtaining an
accurate defect image.

In the future, we will focus on two directions of research.
One direction involves the defect segmentation. The other
direction is to automate the period of the texture process
using deep learning methods.
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