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I. DEFINITIONS

In the Letter we mention the concept of a Reproducing Kernel Hilbert Space, which we formally define here:

Definition 1. Let X be a non-empty input set and R a Hilbert space of functions f : X → C that map inputs to
the real numbers. Let 〈·, ·〉 be an inner product defined on R (which gives rise to a norm via ||f || =

√
〈f, f〉). R is

a reproducing kernel Hilbert space if every point evaluation is a continuous functional F : f → f(x) for all x ∈ X .
This is equivalent to the condition that there exists a function κ : X × X → C for which

〈f, κ(x, ·)〉 = f(x) (1)

with κ(x, ·) ∈ R and for all f ∈ H, x ∈ X .

The function κ is the unique reproducing kernel of R, and Eq. (1) is the reproducing property. This property implies
that 〈κ(x, ·), κ(x′, ·)〉 = κ(x, x′), which means that the kernel function is equivalent to the inner product of vectors
from the RKHS. Note that a different, but isometrically isomorphic Hilbert space can be derived for a so-called
Mercer kernel [2].

Second, in the Letter we make use of the representer theorem, which can be defined as follows [5].

Theorem 1. Let X be an input set, κ : X ×X → R a kernel, D a data set consisting of data pairs (xm, ym) ∈ X ×R
and f : X → R a class of model functions that live in the reproducing kernel Hilbert space Rκ of κ. Furthermore,
assume we have a cost function C that quantifies the quality of a model by comparing predicted outputs f(xm) with
targets ym, and which has a regularisation term of the form g(||f ||) where g : [0,∞) → R is a strictly monotonically
increasing function. Then any function f∗ ∈ Rκ that minimises the cost function C can be written as

f∗(x) =

M∑
m=1

αmκ(x, xm), (2)

for some parameters αm ∈ R.

The representer theorem underlines the significance of kernels, since many models can be expressed by a weighed
expansion of kernel functions on the training data.

II. REPRODUCING KERNELS OF QUANTUM SYSTEMS

In this section we will give an answer to the question of which reproducing kernels the Hilbert space of generic
quantum systems gives rise to. We show that for Hilbert spaces with discrete bases, as well as for the special
‘continuous-basis’ case of the Hilbert space of coherent states, the reproducing kernel of a quantum Hilbert space is
given by inner products of basis vectors. This insight can lead to interesting results. For example, Chatterjee et al.
[1] show that the inner product of an optical coherent state can be turned into a Gaussian kernel (also called radial
basis function kernel) which is widely used in machine learning.

Quantum theory prescribes that the state of a quantum system is modelled by a vector in a Hilbert space Hs. In
a typical setting, the Hilbert space is constructed from a complete basis of eigenvectors {|s〉} of a complete set of
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commuting Hermitian operators which corresponds to physical observables. Due to the hermiticity of the observables,
the basis is orthogonal, and it can be continuous (i.e., if the observable is the position operator describing the location
of a particle), countably infinite (i.e., observing the number of photons in an electric field), or finite (i.e., observing
the spin of an electron). Vectors in the Hilbert space are abstractly referred to as |ψ〉 ∈ H in Dirac notation.
However, every such Hilbert space has a functional representation. In the case of a discrete basis of dimension
N ∈ N ∪∞, the functional representation Hfs of Hs is given by the (Hilbert) space l2 of square summable sequences
{ψ(si) = 〈si|ψ〉}Ni=1 with the inner product 〈ψ,ϕ〉 =

∑
si
ψ(si)

∗ϕ(si). In the continuous case this is the space L2

of square summable (equivalence classes of) functions ψ(s) = 〈s|ψ〉 with the inner product 〈ψ,ϕ〉 =
∫
dsψ(s)∗ϕ(s).

The preceding formulation of quantum theory therefore associates every quantum system with a Hilbert space of
functions mapping from a set S = {s} to the complex numbers. The question is if these Hilbert spaces give rise to a
reproducing kernel that makes them a RKHS with respect to the input set S.

With the resolution of identity 1 =
∫
ds |s〉〈s| for the continuous and 1 =

∑
i |si〉〈si| for the discrete case, we can

immediately “create” the reproducing property from Eq. (1). Consider first the discrete case:

ψ(si) = 〈si|ψ〉 =
∑
sj

〈si|sj〉〈sj |ψ〉 = 〈〈s| · 〉|ψ(·)〉.

We can identify 〈si|sj〉 with the reproducing kernel. Since the basis is orthonormal, we have κ(si, sj) = δi,j . The
continuous case is more subtle. Inserting the identity, we get

ψ(s) =

∫
ds′〈s|s′〉〈s′|ψ〉 = 〈〈s| · 〉, ψ(·)〉,

which is the reproducing kernel property with the reproducing kernel κ(s, s′) = 〈s|s′〉. However, the “function”
s′(s) = δ(s − s′) is not square integrable, which means it is itself not part of Hfs , and the properties of Definition
1 are not fulfilled. This is no surprise, as the space of square integrable functions L2 is a frequent example of a
Hilbert space that is not a RKHS [6]. The inconsistency between Dirac’s formalism and functional analysis is also
a well-known issue in quantum theory, but usually glossed over in physical contexts [7]. If mathematical rigour is
needed, physicists usually refer to the theory of rigged Hilbert spaces [8].

There are quantum systems with an infinite basis which naturally give rise to a reproducing kernel that is not the
delta function. These systems are described by so-called generalised coherent states [9]. In the context of quantum
machine learning, this has been discussed in Ref. [1]. Generalised coherent states are vectors |l〉 in a Hilbert space
Hc of finite or countably infinite dimension, and where the index l is from some topological space L (allowing us to

define a norm |||l〉|| =
√
〈l|l〉). They have two fundamental properties. First, |l〉 is a strongly continuous function of

l,

lim
l→l′
|| |l′〉 − |l〉|| = 0, |l〉 6= 0.

Note that this excludes for example the discrete Fock basis {|n〉}, but also any orthonormal set of states {|z〉} with a
continuous label z ∈ C, since 1

2 |||z
′〉 − |z〉|| = 1 for z′ 6= z. Second, there exists a measure µ on L so that we have a

resolution of identity 1 =
∫
L |l〉〈l| dµ(l). This leads to a functional representation of the Hilbert space where a vector

|ψ〉 ∈ Hc is expressed via |ψ〉 =
∑
l ψ(l)|l〉 with ψ(l) = 〈l|ψ〉. Inserting the resolution of identity to the right hand

side of this expression yields

ψ(l) =

∫
L
〈l|l′〉〈l′|ψ〉 dµ(l′),

which is exactly the reproducing property in Definition 1 with the reproducing kernel κ(l, l′) = 〈l|l′〉. Since there is
a finite overlap between any two states from the basis, the kernel is not the Dirac delta function, and we do not run
into the same problem as for continuous orthogonal bases. Hence, the Hilbert space of coherent states is an RKHS
for the input set {l}.

The most well-known type of coherent state are optical coherent states

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉,
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which are the eigenstates of the non-Hermitian bosonic creation operator â, with the associated kernel

κ(α, β) = 〈α|β〉 = e
−
(
|α|2
2 +

|β|2
2 −αβ

)
, (3)

whose square is a radial basis function or Gaussian kernel as remarked in [1].

III. EXAMPLES OF QUANTUM KERNELS

In the main Letter, we introduce the concept of a quantum feature map, which in quantum computing corresponds
to a feature-embedding circuit Uφ(x) that depends on a classical input x. Here we show some examples of popular
methods of information encoding in quantum machine learning, their feature-embedding circuit, and the ‘quantum
kernel’ they give rise to.

a. Basis encoding. Many quantum machine learning algorithms assume that the inputs x to the computation are
encoded as binary strings represented by a computational basis state of the qubits [10, 11]. For example, x = 01001 is
represented by the 5-qubit basis state |01001〉. The computational basis state corresponds to a standard basis vector
|i〉 (with i being the integer representation of the bitstring) in a 2n-dimensional Hilbert space F , and the effect of the
feature-embedding circuit is given by

Uφ : x ∈ {0, 1}n → |i〉.

This feature map maps each data input to a state from an orthonormal basis and is equivalent to the generic finite-
dimensional case discussed in the previous Section II. As shown there, the generic kernel is the Kronecker delta

κ(x, x′) = 〈i|j〉 = δij ,

which is a binary similarity measure that is only nonzero for two identical inputs.

b. Amplitude encoding. Another approach to information encoding is to associate normalised input vectors x =
(x0, ..., xN−1)T ∈ RN of dimension N = 2n with the amplitudes of a n qubit state |ψx〉 [12, 13],

Uφ : x ∈ RN → |ψx〉 =

N−1∑
i=0

xi|i〉.

As above, |i〉 denotes the i’th computational basis state. This choice corresponds to the linear kernel,

κ(x,x′) = 〈ψx|ψx′〉 = xTx′.

c. Copies of quantum states. With a slight variation of amplitude encoding we can implement polynomial kernels
[14]. Taking d copies of an amplitude encoded quantum state,

Uφ : x ∈ RN → |ψx〉 ⊗ · · · ⊗ |ψx〉,

corresponds to the kernel

κ(x,x′) = 〈ψx|ψx′〉 · · · 〈ψx|ψx′〉 = (xTx′)d.

d. Product encoding. One can also use a (tensor) product encoding, in which each feature of the input x =
(x1, .., xN )T ∈ RN is encoded in the amplitudes of one separate qubit. An example is to encode xi as |φ(xi)〉 =
cos(xi)|0〉+ sin(xi)|1〉 for i = 1, ..., N [15, 16]. This corresponds to a feature-embedding circuit with the effect

Uφ : x ∈ RN →
(

cosx1
sinx1

)
⊗ · · · ⊗

(
cosxN
sinxN

)
∈ R2N ,

and implies a cosine kernel,

κ(x,x′) =

N∏
i=1

cos(xi − x′i).
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IV. LINEAR SEPARABILITY IN FOCK SPACE

We show here that if we map the inputs of a dataset D to a new dataset

D′ = {|(c,x1)〉, ..., |(c,xM )〉},

using the squeezing feature map with phase encoding from the main Letter, the data always becomes linearly separable
in Fock space F . Linear separability means that any assignment of two classes of labels to the data can be separated
by a hyperplane in F . We give a formal proof as well as numerical confirmation.

First consider the following:

Proposition 1. A set of M vectors in RN are linearly separable if M − 1 of them are linear independent.

The proof can be found in Subsection A below. Proposition 1 tells us that if our data is linearly independent, it
is linearly separable. This result is in fact known from statistical learning theory: The VC dimension – a measure
of flexibility or expressive power – of linear models in K dimensions is K + 1, which means that a linear model can
separate or “shatter” K + 1 data points if we can choose the strategy of how to arrange them, but not the strategy
of how they are labelled.

If we can show that the squeezing feature map maps vectors to linearly independent states in Fock space, we know
that any dataset becomes linearly separable in Fock space. To simplify, lets first see look at the squeezing map of a
single mode.

Proposition 2. Given a set of squeezing phases {ϕ1, ..., ϕM} with ϕm 6= ϕm
′

for m = 1, ...,M,m 6= m′ and a
hyperparameter c ∈ R, the squeezed vacuum Fock states |(c, ϕ1)〉, ..., |(c, ϕM )〉 are linearly independent.

The proof is found in Section B below. A very similar proof confirms that the proposition also holds true for the
sueezing map where the real scalars are encoded in the amplitude r of the squeezing parameter.

For the multimode feature map dealing with input data of dimension higher than one,

|(c,ϕm)〉 = |(c, ϕm1 )〉 ⊗ . . .⊗ |(c, ϕm))〉,

and

|(c,ϕm
′
)〉 = |(c, ϕm

′

1 )〉 ⊗ . . .⊗ |(c, ϕm
′
))〉.

We have

〈(c,ϕm)|(c,ϕm
′
)〉 =

N∏
i=1

〈(c, ϕmi )|(c, ϕm
′

i )〉,

which is 1 if ϕmi = ϕm
′

i for all i = 1, ..., N and a value other than zero else. The linear independence therefore carries
over to multi-dimensional feature maps.

In order to confirm the numerical separability of data, we revisit the ‘blobs’ data set from Figure 4 in the paper
and apply a perceptron classifier to the data in feature space. The perceptron is guaranteed to find a separating
hyperplane if it exists. Figure 1 shows the performance of a perceptron classifier in Fock space. The data was mapped
to this space by the squeezing feature map with phase encoding. As one can see, after 5000 epochs (runs through the
dataset) the decision boundary perfectly fits the training data, achieving an accuracy of 1. The number of iterations
to train the perceptron is known to increase with O(1/γ2) where γ is the margin between the two classes [17], and
indeed we find in other simulations that the ‘moons’ and ‘circles’ data only take a few epochs until reaching full
accuracy. Although the perfect fit to the training data is of course not useful for machine learning (as can be seen by
the non-increasing accuracy on the test set) these results confirm that the squeezing feature map makes data linearly
separable in feature space.
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FIG. 1. Decision boundary of a perceptron classifier in Fock space after mapping the 2-dimensional data points via the squeezing
feature map with phase encoding (with c = 1.5). The perceptron only acts on the real subspace and without regularisation.
The ‘blobs’ dataset has now only 70 training and 20 test samples. The perceptron achieves a training accuracy of 1 after
less than 5000 epochs, which means that the data is linearly separable in Fock space. Interestingly, in this example the test
performance remains exactly the same. The simulations were performed with the Strawberry Fields simulator as well as a
scikit-learn out-of-the-box perceptron classifier.

A. Proof of Proposition 1

Let

D = {(x1, y1), · · · , (xM , yM )}

be a dataset of M vectors with xm ∈ RN for all m = 1, · · · ,M , and y ∈ {−1, 1}. The vectors are guaranteed to
be linearly separable if for any assignment of classes {−1, 1} to labels y1, ..., yM there is a hyperplane defined by
parameters w1, ..., wN , b so that

sgn(

N∑
i=1

wix
m
i + b) = ym ∀m = 1, ...,M. (4)

The sign function is a bit tricky, but if we can instead show that the stronger condition

N∑
i=1

wix
m
i + b = ym ∀m = 1, ...,M (5)

holds for some parameters, Eq. 4 must automatically be satisfied.

Equation 5 defines a system of M linear equations with N + 1 unknowns (namely the variables). From the theorey
of linear algebra we know [18] that there is at least one solution if and only if the rank of the ‘coefficient matrix’

[X|1] =

 x11 · · · x1N 1
...

. . .
...

...
xM1 · · · xMN 1


is equal to the rank of its augmented matrix

[X|1|y] =

 x11 · · · x1N 1 y1

...
. . .

...
...

...
xM1 · · · xMN 1 yM

 .

Remember that the rank of a matrix is the number of linearly independent row (and column) vectors.

If the data vectors are all linearly independent we have that N ≥ M (if N < M there would be some vectors
that depend on others, because we have more vectors than dimensions), and the rank of X is min(M,N) = M .
Augmenting X by stacking any number of column vectors simply increases N , which means that it does not change
the rank of the matrix. It follows that for M linearly independent data points embedded in a N dimensional space
the system has a solution. The data is therefore linearly separable.
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With this argument we can add more vectors that are linearly dependent until M = N . After this, we can in fact
add one (but only one) more data point that linearly depends on the others, and still guarantee linear separability.
That is because adding one data point makes the row number equal to the column number in [X|1], and adding more
columns does not change the rank. In contrast, adding two data points means that we have more columns than rows
in [X|1], and adding the column for [X|1|y] can indeed change the rank.

B. Proof of Proposition 2

Let us consider a matrix M where the squeezed states in Fock basis form the rows:

Mjn :=
1√

cosh(rj)

(
−eiφj tanh(rj)

)n √(2n)!

2n n!

We introduce two auxiliary diagonal matrices:

D1 := diag{
√

cosh(rj)}

D2 := diag

{
n!√
(2n)!

}

Multiplying, we find that the matrix V := D1MD2 has matrix elements

Vjn =

(
−1

2
eiφj tanh(rj)

)n
.

Importantly, V has the structure of a Vandermonde matrix. In particular, it has determinant

det(V ) =
1

2

∏
1≤i<j≤n

(
−eiφi tanh(ri) + eiφj tanh(rj)

)
.

The only way that det(V ) = 0 is if

ei(φi−φj) tanh(ri) = tanh(rj)

for some i = j. The squeezing feature map with phase encoding prescribes that ri = rj = c (and we assume that
c > 0). Thus, the only solution to the above equation is when ϕi = ϕj , which can only be true if the two feature
vectors describe the same datapoint, which we excluded in Proposition 2. Thus, det(V ) > 0, which means that
det(M) > 0, and hence M is full rank. This means that the columns of M , which are our feature vectors, are linearly
independent. Note that the same proof also prescribes that squeezing feature maps with absolute value encoding
makes distinct data points linearly independent in Fock space.

V. UNIVERSAL CV LAYER ARCHITECTURE

The architecture of a layer used in the variational circuit for the explicit classifier described in the main Letter

consists of repetitions of a general layer of gates (see Figure 2). We denote by â1,2, â
†
1,2 the creation and annihilation

operators of mode 1 and 2, and with x̂1,2, p̂1,2 the corresponding quadrature operators (see [19]). After an entangling
beam splitter gate,

BS(u, v) = eu(e
iv â†1â2−e

−iv â1â
†
2),

with u, v ∈ R, the circuit consists of single-mode gates that are first, second and third order in the quadratures. The
first-order gate is implemented by a displacement gate

D(z) = e
√
2i(Im(z)x̂−Re(z)p̂),
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W (θ) = BS(θ1, θ2)
D(θ3) P (θ5) V (θ7)

D(θ4) P (θ6) V (θ8)

FIG. 2. The variational circuit W (θ) used for the explicit classifier consists of repetitions of a gate block with the beamsplitter
(BS), displacement (D), quadratic (P) and cubic phase gates (C) described in the text.

with the complex displacement factor z. We use a quadratic phase gate for the second order,

P (u) = ei
u
2 x̂

2

,

and a cubic phase gate for the third order operator,

V (u) = ei
u
3 x̂

3

.

We can in principle construct any continuous-variable quantum circuit from this gate set. This basic layer can easily
be generalised to circuits of more modes by replacing the single beam splitter by a full optical network of beam
splitters [20].
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