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Long before we possessed computers, human beings strove to find 
patterns in data. Ptolemy fitted observations of the motions of the 
stars to a geocentric model of the cosmos, with complex epicycles 

to explain the retrograde motions of the planets. In the sixteenth century, 
Kepler analysed the data of Copernicus and Brahe to reveal a previously 
hidden pattern: planets move in ellipses with the Sun at one focus of the 
ellipse. The analysis of astronomical data to reveal such patterns gave rise 
to mathematical techniques such as methods for solving linear equations 
(Newton–Gauss), learning optima via gradient descent (Newton), 
polynomial interpolation (Lagrange), and least-squares fitting (Laplace). The 
nineteenth and early twentieth centuries gave rise to a broad range of mathe
matical methods for analysing data to reveal the patterns that it contained.

The construction of digital computers in the mid-twentieth century 
allowed the automation of data analysis techniques. Over the past 
half-century, the rapid progression of computer power has allowed 
the implementation of linear algebraic data analysis techniques such 
as regression and principal component analysis, and has led to more 
complex learning methods such as support vector machines. Over the 
same time frame, the development and rapid advance of digital computers 
spawned novel machine learning methods. Artificial neural networks 
such as perceptrons were implemented in the 1950s (ref. 1), as soon as 
computers had the power to realize them. Deep learning built on neural 
networks (such as Hopfield networks and Boltzmann machines) and 
training methods (such as back propagation) were introduced and imple-
mented in the 1960s to 1990s (ref. 2). In the past decade, particularly 
in the past five years, the combination of powerful computers and 
special-purpose information processors capable of implementing deep 
networks with billions of weights3, together with their application to very 
large datasets, has revealed that such deep learning networks are capable 
of identifying complex and subtle patterns in data.

Quantum mechanics is well known to produce atypical patterns in 
data. Classical machine learning methods such as deep neural networks 
frequently have the feature that they can both recognize statistical pat-
terns in data and produce data that possess the same statistical patterns: 
they recognize the patterns that they produce. This observation suggests 
the following hope. If small quantum information processors can pro-
duce statistical patterns that are computationally difficult for a classical 
computer to produce, then perhaps they can also recognize patterns that 
are equally difficult to recognize classically.

The realization of this hope depends on whether efficient quantum 
algorithms can be found for machine learning. A quantum algorithm is 

a set of instructions solving a problem, such as determining whether two 
graphs are isomorphic, that can be performed on a quantum computer. 
Quantum machine learning software makes use of quantum algorithms 
as part of a larger implementation. By analysing the steps that quantum 
algorithms prescribe, it becomes clear that they have the potential to out-
perform classical algorithms for specific problems (that is, reduce the 
number of steps required). This potential is known as quantum speedup.

The notion of a quantum speedup depends on whether one takes a 
formal computer science perspective—which demands mathematical 
proofs—or a perspective based on what can be done with realistic, finite-
size devices—which requires solid statistical evidence of a scaling advan-
tage over some finite range of problem sizes. For the case of quantum 
machine learning, the best possible performance of classical algorithms 
is not always known. This is similar to the case of Shor’s polynomial-time 
quantum algorithm for integer factorization: no sub-exponential-time 
classical algorithm has been found, but the possibility is not provably 
ruled out.

Determination of a scaling advantage contrasting quantum and 
classical machine learning would rely on the existence of a quantum 
computer and is called a ‘benchmarking’ problem. Such advantages 
could include improved classification accuracy and sampling of classically 
inaccessible systems. Accordingly, quantum speedups in machine learning 
are currently characterized using idealized measures from complexity 
theory: query complexity and gate complexity (see Box 1 and Box 1 Table).  
Query complexity measures the number of queries to the information 
source for the classical or quantum algorithm. A quantum speedup 
results if the number of queries needed to solve a problem is lower for the 
quantum algorithm than for the classical algorithm. To determine the gate  
complexity, the number of elementary quantum operations (or gates) 
required to obtain the desired result are counted.

Query and gate complexity are idealized models that quantify the 
necessary resources to solve a problem class. Without knowing how to 
map this idealization to reality, not much can be said about the necessary 
resource scaling in a real-world scenario. Therefore, the required 
resources of classical machine learning algorithms are mostly quantified 
by numerical experimentation. The resource requirements of quantum 
machine learning algorithms are likely to be similarly difficult to quantify 
in practice. The analysis of their practical feasibility is a central subject 
of this review.

As will be seen throughout the review, there are quantum algorithms 
for machine learning that exhibit quantum speedups4–7. For example, the 
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quantum basic linear algebra subroutines (BLAS)—Fourier transforms, 
finding eigenvectors and eigenvalues, solving linear equations—
exhibit exponential quantum speedups over their best known classical 
counterparts8–10. This quantum BLAS (qBLAS) translates into quantum 
speedups for a variety of data analysis and machine learning algorithms 
including linear algebra, least-squares fitting, gradient descent, Newton’s 
method, principal component analysis, linear, semidefinite and quadratic 
programming, topological analysis and support vector machines9,11–19.  
At the same time, special-purpose quantum information processors such 

as quantum annealers and programmable quantum optical arrays are well 
matched to deep learning architectures20–22. Although it is not clear yet to 
what extent this potential can be realized, there are reasons to be optimistic  
that quantum computers can recognize patterns in data that classical 
computers cannot.

The learning machines we consider can be either classical23–32 or quan-
tum8,9,11,13,33–36. The data they analyse can be either classical or quantum 
states produced by quantum sensing or measuring apparatus30,37. We 
briefly discuss conventional machine learning—the use of classical 
computers to find patterns in classical data. We then turn to quantum 
machine learning, where the data that the quantum computer analyses 
can be either classical data, which ends up encoded as quantum states, or 
quantum data. Finally, we discuss briefly the problem of using classical 
machine learning techniques to find patterns in quantum dynamics.

Classical machine learning
Classical machine learning and data analysis can be divided into several 
categories. First, computers can be used to perform ‘classic’ data analysis 
methods such as least-squares regression, polynomical interpolation 
and data analysis. Machine learning protocols can be supervised or 
unsupervised. In supervised learning, the training data are divided into 
labelled categories, such as samples of handwritten digits together with 
the actual number the handwritten digit is supposed to represent, and 
the job of the machine is to learn how to assign labels to data outside the 
training set. In unsupervised learning, the training set is unlabelled, and 
the goal of the machine is to find the natural categories into which the 
training data falls (for example, different types of photos on the internet) 
and then to categorize data outside the training set. Finally, there are 
machine learning tasks, such as playing Go, that involve combinations of 
supervised and unsupervised learning, together with training sets that 
may be generated by the machine itself.

Linear-algebra-based quantum machine learning
A wide variety of data analysis and machine learning protocols operate 
by performing matrix operations on vectors in a high-dimensional vector 
space. But quantum mechanics is all about matrix operations on vectors 
in high-dimensional vector spaces.

The key ingredient behind these methods is that the quantum state 
of n quantum bits or qubits is a vector in a 2n-dimensional complex 
vector space; performing a quantum logic operations or a measure-
ment on qubits multiplies the corresponding state vector by 2n ×​ 2n 
matrices. By building up such matrix transformations, quantum com-
puters have been shown to perform common linear algebraic operations 
such as Fourier transforms38, finding eigenvectors and eigenvalues39, 
and solving linear sets of equations over 2n-dimensional vector spaces 
in time that is polynomial in n, exponentially faster than their best 
known classical counterparts8. This latter is commonly referred to as 
the Harrow, Hassidim and Lloyd (HHL) algorithm8 (see Box 2). The 
original variant assumed a well conditioned matrix that is sparse. 
Sparsity is unlikely in data science, but later improvements relaxed this 
assumption to include low-rank matrices as well10,33,40. Going past HHL, 
here we survey several quantum algorithms which appear as subroutines  
when linear algebra techniques are employed in quantum machine 
learning software.

Quantum principal component analysis
For example, consider principal component analysis (PCA). Suppose that 
the data are presented in the form of vectors vj in a d-dimensional vector 
space, where d = 2n = N. For example, vj could be the vector of changes 
in prices of all stocks in the stock market from time tj to time tj + 1.  
The covariance matrix of the data is =∑ v vC j j j

T , where superscript  
T denotes the transpose operation: the covariance matrix summarizes 
the correlations between the different components of the data, for exam-
ple, correlations between changes in the prices of different stocks. In its 
simplest form, principal component analysis operates by diagonalizing 
the covariance matrix: =∑ c cC ek k k k

†, where the ck are the eigenvectors 

Box 1

Quantum speedups
Quantum computers use effects such as quantum coherence 
and entanglement to process information in ways that classical 
computers cannot. The past two decades have seen steady 
advances in constructing more powerful quantum computers. 
A quantum algorithm is a stepwise procedure performed on 
a quantum computer to solve a problem, such as searching a 
database. Quantum machine learning software makes use of 
quantum algorithms to process information. Quantum algorithms 
can in principle outperform the best known classical algorithms 
when solving certain problems. This is known as a quantum 
speedup105. 

For example, quantum computers can search an unsorted 
database with N entries in time proportional to √​N—that is,  
O(√​N)—where a classical computer given blackbox access to the 
same database takes time proportional to N: thus the quantum 
computer exhibits a square-root speedup over the classical 
computer. Similarly, quantum computers can perform Fourier 
transforms over N data points, invert sparse N ×​ N matrices, and 
find their eigenvalues and eigenvectors in time proportional to a 
polynomial in log2N, where the best known algorithms for classical 
computers take time proportional to Nlog2N: thus the quantum 
computer exhibits an exponential speedup over the best classical 
computer algorithms.

In the Box 1 Table, speedups are taken with respect to their 
classical counterpart(s)—hence, O(√​N) means quadratic speedup 
and O(log(N)) means exponential relative to their classical 
counterpart.

Box 1 Table | Speedup techniques for given quantum machine 
learning subroutines

Method Speedup Amplitude 
amplification

HHL Adiabatic qRAM

Bayesian  
inference106,107

O(√​N) Yes Yes No No

Online  
perceptron108

O(√​N) Yes No No Optional

Least-squares 
fitting9

O(logN)*​ Yes Yes No Yes

Classical 
Boltzmann 
machine20

O(√​N) Yes/No Optional/
No

No/Yes Optional

Quantum 
Boltzmann 
machine22,61

O(logN)*​ Optional/No No No/Yes No

Quantum 
PCA11

O(logN)*​ No Yes No Optional

Quantum 
support vector 
machine13

O(logN)*​ No Yes No Yes

Quantum 
reinforcement 
learning30

O(√​N) Yes No No No

*​There exist important caveats that can limit the applicability of the 
method51.
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of C, and ek are the corresponding eigenvalues. (Because C is symmetric, 
the eigenvectors ck form an orthonormal set.) If only a few of the eigen-
values ck are large, and the remainder are small or zero, then the eigen-
vectors corresponding to those eigenvalues are called the principal 
components of C. Each principal component represents an underlying 
common trend or form of correlation in the data, and decomposing a 
data vector v in terms of principal components, v =​ ∑ cvk k k, allows one 
both to compress the representation of the data and to predict future 
behaviour. Classical algorithms for performing PCA scale as O(d2) in 
terms of computational complexity and query complexity. (We note that 
we make use of ‘big O’ notation to keep track of the leading term that 
dominates scaling.)

For quantum principal component analysis of classical data11, we 
choose a data vector vj at random, and use a quantum random access 
memory (qRAM)41 to map that vector into a quantum state: →v vj j . The 
quantum state that summarizes the vector has logd qubits, and the 
operation of the qRAM requires O(d) operations divided over O(logd) 
steps that can be performed in parallel. Because vj was chosen at random, 
the resulting quantum state has a density matrix ρ= / ∑N v v(1 ) j j j , 
where N is the number of data vectors. By comparison with the covariance 
matrix C for the classical data, we see that the density matrix for the 
quantum version of the data actually is the covariance matrix, up to an 
overall factor. By repeatedly sampling the data, and using a trick called 
density matrix exponentiation42 combined with the quantum phase 
estimation algorithm39, which finds eigenvectors and eigenvalues of 
matrices, we can take the quantum version of any data vector v  and 
decompose it into the principal components ck , revealing the eigenvalue 
of C at the same time: →∑ �v v c ek k k k . The properties of the principal 
components of C can then be probed by making measurements on the 
quantum representation of the eigenvectors of C. The quantum algorithm 
scales as O[(logN)2] in both computational complexity and query 
complexity. That is, quantum PCA is exponentially more efficient than 
classical PCA.

Quantum support vector machines and kernel methods
The simplest examples of supervised machine learning algorithms are 
linear support vector machines and perceptrons. These methods seek to 
find an optimal separating hyperplane between two classes of data in a 
dataset such that, with high probability, all training examples of one class 
are found only on one side of the hyperplane. The most robust classifier 
for the data is given when the margin between the hyperplane and the 
data are maximized. Here the ‘weights’ learned in the training are the 
parameters of the hyperplane. One of the greatest powers of the support 
vector machine lies in its generalization to nonlinear hypersurfaces via 
kernel functions43. Such classifiers have found great success in image  
segmentation as well as in the biological sciences.

Like its classical counterpart, the quantum support vector machine is 
a paradigmatic example of a quantum machine learning algorithm13. A 
first quantum support vector machine was discussed in the early 2000s44, 
using a variant of Grover’s search for function minimization45. Finding s 
support vectors out of N vectors consequently takes /N s  iterations. 
Recently, a least-squares quantum support vector machine was developed 
that harnesses the full power of the qBLAS subroutines. The data input 
can come from various sources, such as from qRAM accessing classical 
data or from a quantum subroutine preparing quantum states. Once the 
data are made available to the quantum computing device, they are 
processed with quantum phase estimation and matrix inversion (the HHL 
algorithm). All the operations required to construct the optimal separating  
hyperplane and to test whether a vector lies on one side or the other can 
in principle be performed in time that is polynomial in logN, where N is 
the dimension of the matrix required to prepare a quantum version of the 
hyperplane vector. Polynomial13 and radial basis function kernels46 are 
discussed, as well as another kernel-based method called Gaussian 
process regression47. This approach to quantum support machines has 
been experimentally demonstrated in a nuclear magnetic resonance 
testbed for a handwritten digit recognition task48.

qBLAS-based optimization
Many data analysis and machine learning techniques involve optimization.  
Of increasing interest is the use of D-Wave processors to solve combi-
natorial optimization problems by means of quantum annealing. Some 
optimization problems can also be formulated as a single-shot solution 
of a linear system, such as the optimization of a quadratic function 
subject to equality constraints, a subset of quadratic programming 
problems. If the matrices involved are sparse or low rank, such problems 
can be solved in time that is polynomial in logd, where d is the system 
dimension via the HHL matrix inversion algorithm, yielding an expo-
nential speedup over classical algorithms, which run in time that is 
polynomial in d.

Box 2

HHL algorithm
The HHL algorithm for inverting systems of equations is a 
fundamental and easy-to-understand subroutine, underpinning 
many quantum machine learning algorithms. The algorithm seeks 
to solve Ax =​ b using a quantum computer. HHL quantizes the 
problem by expressing the vector ∈b CN as a quantum state b  
over log2N qubits, and the vector x as a quantum state x . The 
matrix A can be assumed to be Hermitian without loss of 
generality because the space can always be expanded to make this 
true. The equation =A x b  can then be solved by multiplying 
both sides of the equation by A−1, where A−1 is the inverse of A. 
The HHL algorithm then allows one to construct the quantum state 
proportional to −A b1 . More generally, when A is not square or has 
zero eigenvalues, the algorithm can be used to find the state x  
that minimizes9 −A x b .

The algorithm works as follows. Assume =∑b b En n n  where 
En  is an eigenvector of A with eigenvalue λn ≥​ Λ. By applying 
phase estimation under A to compute λn and by rotating an 
ancillary qubit through an angle of arcsin(Λ/λn) and then 
uncomputing the phase estimation we obtain:
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If the ancillary qubit is measured and if 1 is observed then each 
eigenstate is divided through by λn, which affects the inverse. The 
number of times that the state preparation circuit needs to be 
applied to succeed, after applying amplitude amplification, is 

Λ/O A( ), which is the condition number for the matrix.
The HHL algorithm takes O[(logN)2] quantum steps to output  

x , compared with the O(NlogN) steps required to find x using the 
best known method on a classical computer.

There are several important caveats to the HHL algorithm. First, 
finding the full answer x from the quantum state x  requires O(N) 
repetitions to reconstruct the N components of x. Generalizations to 
HHL, such as least-squares fitting, sidestep this problem by allowing 
the output to have many fewer dimensions than the input. In 
general, however, HHL can provide only features of the data such as 
moments of the solution vector or its expectation value x xB†  over 
other sparse matrices B. The second caveat is that the input vector 
b  needs to be prepared, either on a quantum computer or using 
qRAM, which may be expensive. The third caveat is that the matrix 
must be well conditioned and it must be possible to simulate e−iA 
efficiently. Finally, although the HHL algorithms scales as O[(logN)2], 
current estimates of the cost of the algorithm for practical problems 
are prohibitive109, which underlines the importance of investigating 
further improvements10. In general, the promise of exponential 
speedups for linear systems should be tempered with the 
realization that they apply only to certain problems.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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Most methods in machine learning require iterative optimization of 
their performance. As an example, inequality constraints are often han-
dled via penalty functions49 and variations of gradient descent or Newton’s 
method. A modification of the quantum PCA method implements itera-
tive gradient descent and Newton’s methods for polynomial optimization, 
and can again provide an exponential speedup over classical methods19. 
Multiple copies of the present solution, encoded in a quantum state, are 
used to improve that solution at each step. Brandao and Svore provide  
a quantum version of semi-definite programming that holds out the  
possibility of super-polynomial speedups18. The quantum approxi-
mate optimization algorithm (the QAO algorithm)50 provides a unique 
approach to optimization based on alternating qubit rotations with the 
application of the problem’s penalty function.

Reading classical data into quantum machines
Classical data must be input before being processed on a quantum 
computer. This ‘input problem’ often has little overhead but can present 

a serious bottleneck for certain algorithms. Likewise, the ‘output problem’ 
is faced when reading out data after being processed on a quantum device. 
Like the input problem, the output problem often causes a noticeable 
operational slowdown.

In particular, if we wish to apply HHL, least-squares fitting, quantum 
principal component analysis, quantum support vector machines, and 
related approaches to classical data, the procedure begins by first loading 
considerable amounts of data into a quantum system, which can require 
exponential time51. This can be addressed in principle using qRAM but 
the cost of doing so may be prohibitive for big data problems52. Apart 
from combinatorial-optimization-based approaches, the only known 
linear-algebra-based quantum machine learning algorithm that does 
not rely on large-scale qRAM is the quantum algorithm for performing 
topological analysis of data (persistent homology)14. With the notable 
exceptions of least-squares fitting and quantum support vector machines, 
linear-algebra-based algorithms can also suffer from the output problem 
because desirable classical quantities such as the solution vector for HHL 
or the principal components for PCA are exponentially hard to estimate.

Despite the potential for exponential quantum speedups, without much 
effort put into optimization, the circuit size and circuit depth overhead 
can balloon (to around 1025 quantum gates in one proposed realization 
of HHL53). Ongoing work is needed to optimize such algorithms, provide 
better cost estimates and ultimately to understand the sort of quantum 
computer that we would need to provide useful quantum alternatives to 
classical machine learning.

Deep quantum learning
Classical deep neural networks are highly effective tools for machine 
learning and are well suited to inspire the development of deep quantum 
learning methods. Special-purpose quantum information processors such 
as quantum annealers and programmable photonic circuits are well suited 
for constructing deep quantum learning networks21,54,55. The simplest  
deep neural network to quantize is the Boltzmann machine (see  Box 3  
and  Box 3 Figure). The classical Boltzmann machine consists of bits 
with tunable interactions: the Boltzmann machine is trained by adjusting 
those interactions so that the thermal statistics of the bits, described by a 
Boltzmann–Gibbs distribution (see Fig. 1b), reproduces the statistics of 
the data. To quantize the Boltzmann machine one simply takes the neural 
network and expresses it as a set of interacting quantum spins, corre-
sponding to a tunable Ising model. Then by initializing the input neurons 
in the Boltzmann machines into a fixed state and allowing the system to 
thermalize, we can read out the output qubits to obtain an answer.

An essential feature of deep quantum learning is that it does not require 
a large, general-purpose quantum computer. Quantum annealers are 
special-purpose quantum information processors that are much easier 
to construct and to scale up than are general-purpose quantum computers 
(see Fig. 1a). Quantum annealers are well suited for implementing deep 
quantum learners, and are commercially available. The D-Wave quantum 
annealer is a tunable transverse Ising model that can be programmed to 
yield the thermal states of classical systems, and certain quantum spin 
systems. The D-Wave device has been used to perform deep quantum 
learning protocols on more than a thousand spins56. Quantum Boltzmann 
machines22 with more general tunable couplings, capable of implementing  
universal quantum logic, are currently at the design stage57. On-chip 
silicon waveguides have been used to construct linear optical arrays with 
hundreds of tunable interferometers, and special-purpose superconducting  
quantum information processors could be used to implement the 
quantum approximate optimization algorithm.

There are several ways that quantum computers can provide advantages 
here. First, quantum methods can make the system thermalize quadra
tically faster than its classical counterpart20,58–60. This can make accurate 
training of fully connected Boltzmann machines practical. Second, 
quantum computers can accelerate Boltzmann training by providing 
improved ways of sampling. Because the neuron activation pattern in 
the Boltzmann machine is stochastic, many repetitions are needed to 
determine success probabilities, and in turn, to discover the effect that 

Figure 1 | Quantum tunnelling versus thermalization. A quantum state 
tunnels when approaching a resonance point before decoherence induces 
thermalization. Shades of blue illustrate occupation of energy levels (black 
dashes). a, A quantum state must traverse a local minimum in thermal 
annealing, whereas a coherent quantum state can tunnel when brought 
close to resonance. b, Coherent effects decay through interaction with an 
environment, causing the probability distribution of the occupancy of a 
system’s energy levels to follow a Gibbs distribution.

a

b

Thermal annealing 

Thermal state

Quantum
annealing
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changing a weight in the neural network has on the performance of the 
deep network. When training a quantum Boltzmann machine, in contrast, 
quantum coherence can quadratically reduce the number of samples 
needed to learn the desired task. Furthermore, quantum access to the 
training data (that is, qRAM or a quantum blackbox subroutine) allows 
the machine to be trained using quadratically fewer access requests to the 
training data than are required by classical methods: a quantum algorithm 
can train a deep neural network on a large training dataset while reading 
only a minuscule number of training vectors20.

Quantum information processing provides new, fundamentally 
quantum, models for deep learning. For example, adding a transverse 
field to the Ising model quantum Boltzmann machine can induce a vari-
ety of quantum effects such as tunnelling22,61. Adding further quantum 
couplings transforms the quantum Boltzmann machine into a variety of 
quantum systems57,62. Adding a tunable transverse interaction to a tunable 
Ising model is known to be universal for full quantum computing57: with 
the proper weight assignments this model can execute any algorithm 
that a general-purpose quantum computer can perform. Such universal 
deep quantum learners may recognize and classify patterns that classical 
computers cannot.

Unlike classical Boltzmann machines, quantum Boltzmann machines 
output a quantum state. Thus deep quantum networks can learn to 
generate quantum states representative of a wide variety of systems, 
allowing the network to act as a form of quantum associative memory63. 
This ability to generate quantum states is absent from classical machine 
learning. Thus quantum Boltzmann training has applications beyond 
classifying quantum states and providing richer models for classical data.

Quantum machine learning for quantum data
Perhaps the most immediate application of quantum machine learning 
is to quantum data—the actual states generated by quantum systems 
and processes. As described above, many quantum machine learning 
algorithms find patterns in classical data by mapping the data to quantum 
mechanical states, and then manipulating those states using basic quantum 
linear algebra subroutines. These quantum machine learning algorithms 
can be applied directly to the quantum states of light and of matter to reveal 
their underlying features and patterns. The resulting quantum modes of 
analysis are frequently much more efficient and more illuminating than 
the classical analysis of data taken from quantum systems. For example, 
given multiple copies of a system described by an N ×​ N density matrix, 
quantum principal component analysis can be used to find its eigenvalues  
and to reveal the corresponding eigenvectors in time O[(logN)2], compared 
with the O(N2) measurements needed for a classical device to perform 
tomography on a density matrix, and the O(N2) operations needed to 
perform the classical PCA. Such quantum analysis of quantum data could 
profitably be performed on the relatively small quantum computers that 
are likely to be available over the next several years.

A particularly powerful quantum data analysis technique is the use 
of quantum simulators to probe quantum dynamics. Quantum simu-
lators are ‘quantum analogue computers’—quantum systems whose 
dynamics can be programmed to match the dynamics of some desired 
quantum system. A quantum simulator can either be a special-purpose 
device constructed to simulate a particular class of quantum systems, 
or a general-purpose quantum computer. By connecting a trusted 
quantum simulator to an unknown system and tuning the model of the 
simulator to counteract the unknown dynamics, the dynamics of the 
unknown system can be efficiently learned using approximate Bayesian 
inference64–66. This exponentially reduces the number of measurements 
needed to perform the simulation. Similarly, the universal quantum 
emulator algorithm67 allows one to reconstruct quantum dynamics and 
the quantum Boltzmann training algorithm of ref. 61 allows states to 
be reconstructed, in time logarithmic in the dimension of the Hilbert 
space, which is exponentially faster than reconstructing the dynamics 
via classical tomography.

To use a quantum computer to help characterize a quantum system65,66 
or to accept input states for use in a quantum PCA algorithm, we must 

Box 3

Training quantum Boltzmann  
machines
In quantum Boltzmann machine training we wish  
to learn a set of Hamiltonian parameters (wj) such that for  
a fixed set of Hj we have that our input state ρtrain is well 
approximated22,61 by σ= /−∑ −∑e Tr(e )w H w Hj j j j j j . For all visible 
Boltzmann machines, the quantum relative entropy 
ρ σ ρ ρ ρ σ= −S( ) Tr[ log( ) log( )]train train train train  is the most  

logical way to measure the quality of the approximation. It is  
easy to see (assuming that the kernels of ρ and σ coincide) that  
the quantum relative entropy provides an upper bound for the 
distance between the two states. Thus, minimizing it minimizes  
the error in approximating the state.

Although the relative entropy is an excellent measure of 
the distance between two states, it can be difficult to discover 
experimentally. However, the gradient (that is, the direction of 
greatest change) of the relative entropy is easy to estimate61:

ρ σ σ ρ∂ =S H H( ) Tr( ) Tr( )w j jtrainj

Given an experimental dataset of expectation values for ρtrain and a 
quantum simulator for Tr(σHj) we can find the direction of greatest 
improvement in the quantum relative entropy. Gradient descent 
then is used to update w via η ρ σ→ − ∇w w S ( )train  for η >​ 0. 
Stoquastic (quantum stochastic) Hamiltonians have the property 
that all off-diagonal matrix elements in the standard basis are real 
and non-positive (equivalently non-negative). No efficient classical 
analogue of this method is known in general for non-stoquastic H 
(see ref. 57).

We show this protocol below for learning a random state 
formed from a uniform mixture of four random states—random 
with respect to the unique and unitarily invariant Haar measure. 
Fewer than ten gradient steps (epochs) are needed to train it to 
approximately generate ρtrain using a complete set of Hamiltonian 
terms.

Box 3 Figure | Learning a random state using a quantum Boltzmann 
machine.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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face the substantial technical challenge of loading coherent input states. 
Nonetheless, because such applications do not require qRAM and offer 
the potential for exponential speedups for device characterization22,61,65,66 
they remain among the promising possibilities for near-term application 
of quantum machine learning.

Designing and controlling quantum systems
A major challenge in the development of quantum computation and 
information science involves tuning quantum gates to match the exacting 
requirements needed for quantum error correction. Heuristic search 
methods can help to achieve this in a supervised learning scenario68,69 
(for instance in the case of nearest-neighbour-coupled superconducting 
artificial atoms69 with gate fidelity above 99.9% in the presence of noise) 
and thus to reach an accepted threshold for fault-tolerant quantum 
computing. A similar methodology has been successful in constructing a 
single-shot Toffoli gate, again reaching gate fidelity above 99.9%70. Genetic 
algorithms have been employed to reduce digital and experimental errors 
in quantum gates71. They have been used to simulate controlled-NOT 
gates by means of ancillary qubits and imperfect gates. Besides outper-
forming protocols for digital quantum simulations, it has been shown that 
genetic algorithms are also useful for suppressing experimental errors 
in gates72. Another approach used stochastic gradient descent and two-
body interactions to embed a Toffoli gate into a sequence of quantum 
operations or gates without time-dependent control using the natural 
dynamics of a quantum network73. Dynamical decoupling sequences help 
to protect quantum states from decoherence, which can be designed using 
recurrent neural networks74.

Controlling a quantum system is just as important and complex. 
Learning methods have also been very successful in developing control 
sequences to optimize adaptive quantum metrology, which is a key 
quantum building block in many quantum technologies. Genetic 
algorithms have been proposed for the control of quantum molecules to 
overcome the problem caused by changing environmental parameters 
during an experiment75. Reinforcement learning algorithms using 
heuristic global optimization, like the algorithm used for designing 
circuits, have been widely successful, particularly in the presence of 
noise and decoherence, scaling well with the system size76–78. One can 
also exploit reinforcement learning in gate-based quantum systems. For 
instance, adaptive controllers based on intelligent agents for quantum 
information demonstrate adaptive calibration and compensation strategies 
to an external stray field of unknown magnitude in a fixed direction.

Classical machine learning is also a powerful tool with which to extract 
theoretical insights about quantum states. Neural networks have recently 
been deployed to study two central problems in condensed matter, 
namely phase-of-matter detection79,80 and ground-state search81. These 
succeeded in achieving better performances than established numerical 
tools. Theoretical physicists are now studying these models to understand 
analytically their descriptive power compared to traditional methods such 
as tensor networks. Interesting applications to exotic states of matter are 
already on the market, and have been shown to capture highly non-trivial 
features from disordered or topologically ordered systems.

Perspectives on future work
As we have discussed in this review, small quantum computers and 
larger special-purpose quantum simulators, annealers and so on seem to 
have potential use in machine learning and data analysis15,21,22,36,48,82–95. 
However, the execution of quantum algorithms requires quantum 
hardware that is not yet available.

On the hardware side, there have been great strides in several enabling 
technologies. Small-scale quantum computers with 50–100 qubits will 
be made widely available via quantum cloud computing (the ‘Qloud’). 
Special-purpose quantum information processors such as quantum 
simulators, quantum annealers, integrated photonic chips, nitrogen 
vacancy centres (NV)-diamond arrays, qRAM, and made-to-order 
superconducting circuits will continue to advance in size and complex-
ity. Quantum machine learning offers a suite of potential applications 

for small quantum computers23–31,96–98 complemented and enhanced by 
special-purpose quantum information processors21,22, digital quantum 
processors70,73,78,99,100 and sensors76,77,101.

In particular, quantum annealers with around 2,000 qubits have been 
built and operated, using integrated superconducting circuits that are, 
in principle, scalable. The biggest challenges for quantum annealers to 
implement quantum machine learning algorithms include improving 
connectivity and implementing more general tunable couplings between 
qubits. Programmable quantum optic arrays with around 100 tunable 
interferometers have been constructed using integrated photonics in sil-
icon, but loss of quantum effects increases as such circuits are scaled up. 
A particularly important challenge for quantum machine learning is the 
construction of interface devices such as qRAM that allow classical infor-
mation to be encoded in quantum mechanical form52. A qRAM to access 
N pieces of data consists of a branching array of 2N quantum switches, 
which must operate coherently during a memory call. In principle, such 
a qRAM takes time O(logN) to perform a memory call, and can tolerate 
error rates of up to O(1/logN) per switching operation, where logN is the 
depth of the qRAM circuit. Proof-of-principle demonstrations of qRAM 
have been performed, but constructing large arrays of quantum switches 
is a difficult technological problem.

These hardware challenges are technical in nature, and clear paths exist 
towards overcoming them. They must be overcome, however, if quantum 
machine learning is to become a ‘killer app’ for quantum computers. As 
noted previously, most of the quantum algorithms that have been identi-
fied face a number of caveats that limits their applicability. We can distill 
the caveats mentioned above into four fundamental problems.

(1)	 �The input problem. Although quantum algorithms can provide dra-
matic speedups for processing data, they seldom provide advantages 
in reading data. This means that the cost of reading in the input can 
in some cases dominate the cost of quantum algorithms. Under-
standing this factor is an ongoing challenge.

(2)	� The output problem. Obtaining the full solution from some quan-
tum algorithms as a string of bits requires learning an exponential 
number of bits. This makes some applications of quantum machine 
learning algorithms infeasible. This problem can potentially be side-
stepped by learning only summary statistics for the solution state.

(3)	� The costing problem. Closely related to the input/output problems, at 
present very little is known about the true number of gates required 
by quantum machine learning algorithms. Bounds on the complexity  
suggest that for sufficiently large problems they will offer huge  
advantages, but it is still unclear when that crossover point occurs.

(4)	� The benchmarking problem. It is often difficult to assert that a 
quantum algorithm is ever better than all known classical machine 
algorithms in practice because this would require extensive bench-
marking against modern heuristic methods. Establishing lower 
bounds for quantum machine learning would partially address 
this issue.

To avoid some of these problems, we could apply quantum computing 
to quantum, rather than classical, data. One aim therein is to use quantum 
machine learning to characterize and control quantum computers66. This 
would enable a virtuous cycle of innovation similar to that which occurred 
in classical computing, wherein each generation of processors is then 
leveraged to design the next-generation processors. We have already 
begun to see the first fruits of this cycle with classical machine learning 
being used to improve quantum processor designs23–31,102–104, which in 
turn provide powerful computational resources for quantum-enhanced 
machine learning applications themselves8,9,11,13,33–36.
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