Strength functions of ⁴He using realistic nuclear interaction

Japan-Italy EFES Workshop on correlations in Reactions and Continuum 6-8 September, 2010 Istituti di Fisica, Torino, Italy

Wataru Horiuchi (GSI, Germany)

Collaborators: Yasuyuki Suzuki (Niigata U., Japan) Toru Sato (Osaka U., Japan)

Strength functions of ⁴He

- Photo-absorption of ⁴He
 - Recent measurements
 - Peak ∼27MeV

S. Nakayama et al., PRC 76, 021305 (2007).

• Peak ~30 MeV

T. Shima et al., PRC 72, 044004 (2005).

Theoretical studies

D. Gazit et al. PRL 96, 112302 (2006).S. Quaglioni and P. Navratil, PLB652, 370 (2007).

Taken from S. Nakayama et al. PRC 76, 021305 (2007).

Excitation of ⁴He induced by the weak interaction
 – v-⁴He reaction (Gamow-Teller, Spin-dipole, etc.)

 \rightarrow important for the supernova explosion scenario

Reliable model is needed.

Purpose of the study

- Evaluating reliable strength functions induced by electro-weak processes involving ⁴He
 - Further study for the controversial of photoabsorption cross section
 - Study four-nucleon continuum structure
 - Calculate a reliable neutrino-⁴He cross section
 - 1. Four-body calculation
 - 2. Use of bare nuclear interaction
 - 3. Continuum -> Complex scaling method

Variational calculation for few-body systems

Hamiltonian

mian
$$H = \sum_{i=1}^{A} T_i - T_{cm} + \sum_{i < j}^{A} v_{ij} + \sum_{i < j < k}^{A} v_{ijk}$$

 $v_{12} = V_c(r) + V_{\text{Coul.}}(r)P_{1\pi}P_{2\pi} + V_t(r)S_{12} + V_b(r)L \cdot S$

- AV8 type interactions(AV8', G3RS); central, tensor, spin-orbit
- Three-body interaction (³H, ³He, ⁴He) E. Hiyama et al. PRC70, 031001(R) (2002)

Basis function

$$\Psi_{(LS)JM_JTM_T} = [\psi_L^{(\text{space})} \psi_S^{(\text{spin})}]_{JM_J} \psi_{TM_T}^{(\text{isospin})}$$
$$\psi_{SM_S}^{(\text{spin})} = \left| [\cdots [[[\frac{1}{2}\frac{1}{2}]_{S_{12}}\frac{1}{2}]_{S_{123}}] \cdots]_{SM_S} \right\rangle$$

 $\psi_{LM}^{(\text{space})}$ is expressed in the correlated Gaussians with global vectors $F_{(L_1L_2)LM}(u_1, u_2, A, x) = \exp\left(-\frac{1}{2}\widetilde{x}Ax\right)[\mathcal{Y}_{L_1}(\widetilde{u_1}x)\mathcal{Y}_{L_2}(\widetilde{u_2}x)]_{LM}$

Strength function of ⁴He

• Ground state: precise wave function

accuracy~60 keV (GFM, NCSM, ...)

Y. Suzuki, W.H., M. Orabi, K. Arai, Few-body syst. 42 33-72 (2008).

- Continuum state
 - A superposition of many basis functions
 - Important configuration at around 20-40 MeV
 - 3N+N cluster structure W. H. and Y. Suzuki, PRC78, 034305(2008)
 - Distortion of the clusters
 - Discretized <-> Continuous strength function
 - Complex Scaling Method

Configurations for 1⁻ continuum state

Dipole operator

$$\mathcal{M}(E1,\mu) = \sqrt{\frac{4\pi}{3}} \sum_{i=1}^{A} e_i \mathcal{Y}_{1\mu}(\boldsymbol{r}_i - \boldsymbol{X})$$

3N: three-body cal.3N-N: p-wave (Gaussians)

2N: two-body cal.2N-N: p-wave (Gaussians)3N*-N: s-wave (Gaussians)

Dipole strength function with 3N+N configuration (ϑ =20°)

Realistic two-body + Three body force Effective (central)

Photo-absorption cross section

Photo-absorption cross section

$$\sigma_{\gamma}(E) = \frac{4\pi^2}{\hbar c} ER(E)$$

Data taken from

- S. Nakayama et al. PRC 76, 021305 (2007).
- B. Nilsson et al., PRC 75, 014007 (2007).
- T. Shima et al., PRC 72, 044004 (2005).

- S. Quaglioni et al., slide presented in FM50
- S. Quaglioni et al., Phys. Lett. B652, 370-375(2007)

Operators induced by the weak interaction

- Allowed transition (2 types)
 - Fermi type: does not contribute to $T_z=0$ state

- Gamow-Teller type: $0^+0 \rightarrow 1^+1$

- First forbidden transition (5 types)
 - Dipole (E1) type: $0^+0 \rightarrow 1^-1$
 - Spin-dipole (SD) type (λ =0,1,2): 0⁺0 $\rightarrow \lambda^{-}1$
 - SD type in the momentum space $0^+0 \rightarrow 0^-1$

Gamow-Teller strength functions

Definition

 $\mathcal{M}(\mathrm{GT},\mu) = \sum_{i=1}^{A} \sigma_{\mu}^{(i)} \tau_{0}^{(i)}$

(neutral current)

Reduced Transition Matrix Element

Spin-dipole strength functions

Definition $\mathcal{M}(\text{SD}, \lambda \mu) = \sum_{i=1}^{A} \left[\mathcal{Y}_1(\boldsymbol{r}_i - \boldsymbol{X}) \times \sigma^{(i)} \right]_{\lambda \mu} \tau_0^{(i)}$ (neutral current)

Reduced Transition Matrix Element

$$B(\mathrm{SD}; 0^+ 0 \to \lambda^- 1) = |\langle \Psi_f || |\mathcal{M}(\mathrm{SD}, \lambda)| ||\Psi_0\rangle|^2$$

Spin-dipole strength functions

LS components calculated with a bound state approx. W. H. and Y. Suzuki, PRC78, 034305(2008)

Summary and Future work

- Four-body calculation with bare realistic interactions
 - Important configurations at 20 40 MeV
 - 3N+N cluster structure
 - Distortion of the clusters
 - Complex Scaling method
 - Dipole strength functions
 - Good agreement with some of the experiments
 - At low energy: disagree with the experiment by Shima et al.
 - Strength functions induced by the weak interaction
 - GT strengths <-> ground state property
 - Spin-dipole and dipole strengths <-> continuum structure of ⁴He Future: v-⁴He cross section

Ground state energy also agrees with the other precise methods within 60 keV Y. Suzuki, W.H., M. Orabi, K. Arai, Few-body syst. 42 33-72 (2008).

Test of GVR

Potential	G3	RS		AV8′	
Method	GVR	PWE	GVR	PWE	Faddeev
${}^{3}\mathrm{H}(\frac{1}{2}^{+})$					
Ē	-7.73	-7.72	-7.76	-7.76	-7.767
$\langle T \rangle$	40.24	40.22	47.59	47.57	47.615
$\langle V_{\rm c} \rangle$	-26.80	-26.79	-22.50	-22.49	-22.512
$\langle V_{\rm t} \rangle$	-21.13	-21.13	-30.85	-30.84	-30.867
$\langle V_{ m b} angle$	-0.03	-0.03	-2.00	-2.00	-2.003
$\sqrt{\langle r^2 \rangle}$	1.79	1.79	1.75	1.75	
P(0, 1/2)	92.95	92.94	91.38	91.37	91.35
P(2, 3/2)	7.01	7.02	8.55	8.57	8.58
P(1, 1/2)	0.03	0.03	0.04	0.04	
P(1, 3/2)	0.02	0.02	0.02	0.02	}0.07
$^{4}\text{He}(0^{+})$					
E	-25.29	-25.26	-25.08	-25.05	
$\langle T \rangle$	86.93	86.77	101.59	101.36	
$\langle V_{\rm c} \rangle$	-66.24	-66.11	-54.93	-54.73	
$\langle V_{\rm Coul} \rangle$	0.76	0.76	0.77	0.77	
$\langle V_{ m t} angle$	-46.62	-46.55	-67.85	-67.79	
$\langle V_{ m b} angle$	-0.13	-0.12	-4.65	-4.66	
$\sqrt{\langle r^2 \rangle}$	1.51	1. <mark>5</mark> 1	1.49	1.49	
P(0, 0)	88.46	88.50	85.76	85.79	
P(2,2)	11.30	11.26	13.87	13.85	
P(1, 1)	0.25	0.24	0.36	0.36	

Comparison with Partial Wave Expansion (PWE)

$$\exp\left(-\frac{1}{2}a_{1}\boldsymbol{x}_{1}^{2}-\frac{1}{2}a_{2}\boldsymbol{x}_{2}^{2}\cdots\right) \times [[[\mathcal{Y}_{\ell_{1}}(\boldsymbol{x}_{1})\mathcal{Y}_{\ell_{2}}(\boldsymbol{x}_{2})]_{L_{12}}\mathcal{Y}_{\ell_{3}}(\boldsymbol{x}_{3})]_{L_{123}}\cdots]$$

\rightarrow combine rearrangement channels

Ground state energy agrees with the other precise methods within 60 keV. H. Kamada et al., PRC64, 044001 (2001)

Y. Suzuki, W. H., M. Orabi, K. Arai, Few-Body Systems 42, 33 (2008).

Four-body calculation for 1⁻ continuum state

Increase basis size one by one

Dipole operator

$$\mathcal{M}(E1,\mu) = \sqrt{\frac{4\pi}{3}} \sum_{i=1}^{A} e_i \mathcal{Y}_{1\mu}(\boldsymbol{r}_i - \boldsymbol{X})$$

Transition strength

$$R(E_i) = \sum_{k} \left| \left\langle \Psi_{E_k} \left| \mathcal{O} \right| \Psi_0 \right\rangle \right|^2 \delta_{E_k - E_0, k}$$

Sum rule $\langle \Psi_0 | \mathcal{M}^{\dagger} \mathcal{M} | \Psi_0 \rangle \sim \frac{ZN}{3(A-1)} \langle r_p^2 \rangle$

Ν	AV8'	G3RS
1000	0.841	0.877
2000	0.849	0.883
3000	0.852	0.885
4000	0.853	0.886

With all configurations 0.855 ~95%

Spin-dipole strengths

$$\mathcal{M}(\mathrm{SD},\lambda\mu) = \sum_{i=1}^{A} \left[\mathcal{Y}_1(\boldsymbol{r}_i - \boldsymbol{X}) \times \sigma^{(i)} \right]_{\lambda\mu} t_{\pm}^{(i)}$$

$$B(\mathrm{SD}; 0^+ 0 \to \lambda^- 1) = |\langle \Psi_f || |\mathcal{M}(\mathrm{SD}, \lambda)| ||\Psi_0\rangle|^2$$

Shell model calculation T. Suzuki et al., Phys. Rev. C 74, 034307 (2006)

Energy convergence for ⁴He

Optimization of a basis set by the Stochastic Variational Method

K. Varga and Y. Suzuki, Phys. Rev. C52, 2885 (1995).

Transitions from the first excited 0⁺

Correlated Gaussian and global vector

$$\exp\left(-\frac{1}{2}ar^{2}\right) \rightarrow \exp\left(-\frac{1}{2}\tilde{x}Ax\right) = \exp\left(-\frac{1}{2}\sum_{i,j=1}^{A-1}A_{ij}x_{i}\cdot x_{j}\right)$$

$$\exp\left(A_{ij}x_{i}\cdot x_{j}\right) \sim \sum_{n}(x_{i}\cdot x_{j})^{n} \sim \sum_{\ell=n,n-2,\dots}\left[\mathcal{Y}_{\ell}(x_{i})\mathcal{Y}_{\ell}(x_{j})\right]_{00} \mathbf{x}_{1}$$

$$\mathbf{x}_{2}$$

$$\mathbf{x}_{3}$$

$$\mathbf{x}_{1}$$

$$\mathbf{x}_{3}$$

$$\mathbf{x}_{1}$$

$$\mathbf{x}_{3}$$

$$\mathbf{x}_{1}$$

$$\mathbf{x}_{2}$$

$$\mathbf{x}_{2}$$

$$\mathbf{x}_{3}$$

$$\mathbf{x}_{1}$$

$$\mathbf{x}_{2}$$

$$\mathbf{x}_{2}$$

$$\mathbf{x}_{3}$$

$$\mathbf{x}_{1}$$

$$\mathbf{x}_{2}$$

$$\mathbf{x}_{2}$$

$$\mathbf{x}_{3}$$

$$\mathbf{x}_{1}$$

$$\mathbf{x}_{2}$$

$$\mathbf{x}_{2}$$

$$\mathbf{x}_{3}$$

$$\mathbf{x}_{1}$$

$$\mathbf{x}_{2}$$

$$\mathbf{x}_{3}$$

$$\mathbf{x}_{1}$$

$$\mathbf{x}_{2}$$

$$\mathbf{x}_{2}$$

$$\mathbf{x}_{3}$$

$$\mathbf{x}_{1}$$

$$\mathbf{x}_{2}$$

$$\mathbf{x}_{3}$$

$$\mathbf{x}_{3}$$

$$\mathbf{x}_{1}$$

$$\mathbf{x}_{2}$$

Global Vector Representation (GVR) Parity $(-1)^{L_1+L_2}$ $F_{(L_1L_2)LM}(u_1, u_2, A, x) = \exp\left(-\frac{1}{2}\widetilde{x}Ax\right) [\mathcal{Y}_{L_1}(\widetilde{u_1}x)\mathcal{Y}_{L_2}(\widetilde{u_2}x)]_{LM}$

Hard to obtain a precise solution using a realistic interaction

- Short-range repulsion
 - \rightarrow A superposition of many basis states
- Strong tensor component
 - \rightarrow Angular momentum coupling

Configurations for 1⁻ continuum state

 $\Psi_{1M}(3N+N) = \mathcal{A}\left[[\Psi_{L_{123}}(3N)f_1(\boldsymbol{x}_3)]_L \left[\chi_{S_{12},S_{123}}(123)\chi_{1/2}(4) \right]_S \right]_{1M},$

$$\Psi_{1M}(3N^*+N) = \mathcal{A} \left[\left[\Psi_L(3N^*)g_0(x_3) \right]_L \left[\chi_{1,S_{123}}(123)\chi_{1/2}(4) \right]_S \right]_{1M}, \\ = \mathcal{A} \left[\left[\left[\Psi_{L_{12}}(2N)f_1(x_2) \right]_L g_0(x_3) \right]_L \left[\left[\chi_1(12)\chi_{1/2}(3) \right]_{S_{123}} \chi_{1/2}(4) \right]_S \right]_{1M} \right]_{1M}$$

Four-nucleon system

$$\Phi_{(LS)JM_JTM_T} = \mathcal{A} \Big\{ e^{-\frac{1}{2}\tilde{x}Ax} \Big[\Big[\mathcal{Y}_{L_1}(\widetilde{u_1}x) \mathcal{Y}_{L_2}(\widetilde{u_2}x) \Big]_L \chi_S \Big]_{JM_J} \eta_{TM_T} \Big\},\$$

$$\begin{array}{ll} J^{\pi} & (LS) \\ 0^{+} & (00), (22); (11) \\ 1^{+} & (01), (21), (22); (10), (11), (12), (32) \\ 0^{-} & (11); (22) \\ 1^{-} & (10), (11), (12), (32); (21), (22) \\ 2^{-} & (11), (12), (31), (32); (20), (21), (22), (42). \end{array}$$

$$e^{-\frac{1}{2}\tilde{x}Ax} = \exp\left[-\frac{1}{2}\sum_{i< j} \left(\frac{r_i - r_j}{b_{ij}}\right)^2\right] \quad A \rightleftharpoons (b_{12}, b_{13}, \dots, b_{34})$$

Correlated Gaussian with global vectors (GVR: Global vector representation)

• L, parity (-1)^L $\exp\left(-\frac{1}{2}\widetilde{x}Ax\right)\mathcal{Y}_{LM}(\widetilde{u_1}x)$

$$\widetilde{x}Ax = \sum_{i,j=1}^{N-1} A_{ij}x_i \cdot x_j \qquad A_{ij} \neq 0$$

$$\exp(A_{ij}\boldsymbol{x}_i \cdot \boldsymbol{x}_j) \to \sum_n (\boldsymbol{x}_i \cdot \boldsymbol{x}_j)^n \sim \sum_{\ell=n,n-2,\dots} [y_\ell(\boldsymbol{x}_i)y_\ell(\boldsymbol{x}_j)]_{00}$$

$$\widetilde{u_1} x \!=\! \sum_{i=1}^{N-1} u_{1_i} x_i$$
 Global vector

$$\mathcal{Y}_{LM_L}(u_1x_1 + u_2x_2) = \sum_{\ell=0}^{L} \sqrt{\frac{4\pi(2L+1)!}{(2\ell+1)!(2L-2\ell+1)!}} \ u_1^{\ell} u_2^{L-\ell} [\mathcal{Y}_{\ell}(x_1)\mathcal{Y}_{L-\ell}(x_2)]_{LM_L}$$

• L, parity (-1)^{L+1} $\exp\left(-\frac{1}{2}\widetilde{x}Ax\right)[\mathcal{Y}_{L}(\widetilde{u_{1}}x)\mathcal{Y}_{1}(\widetilde{u_{2}}x)]_{LM}$

Algorithm of the SVM

Possibility of the stochastic optimization

1. increase the basis dimension one by one

- 2. set up an optimal basis by trial and error procedures
- 3. fine tune the chosen parameters until convergence
 - **1.** Generate $(A_k^1, A_k^2, \dots, A_k^m)$ randomly
 - **2.** Get the eigenvalues $(E_k^1, E_k^2, \dots, E_k^m)$
 - **3.** Select A_k^n corresponding to the lowest E_k^n and **Include** it in a basis set

 $4. \quad k \rightarrow k+1$

Y. Suzuki and K. Varga, Stochastic variational approach to quantummechanical few-body problems, LNP 54 (Springer, 1998). K. Varga and Y. Suzuki, Phys. Rev. C52, 2885 (1995).

Advantages of GVR

Variational parameters A, u → Stochastically selected

- No need to specify intermediate angular momenta.
 Just specify total angular momentum L
- Easy to include various rearrangement channels.

