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Continuum and bound states 

Great progress in ab initio approach to bound states     

starting from realistic interactions

Predictability  

Problems involving continuum states are still difficult esp. 
with realistic interactions  

Application of bound state technique to continuum problem 

Reducing the continuum problem to a class of bound-state   

problems in which L2 basis functions are employed

References:
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Various problems including continuum states

Decay of resonance

A*          B+b,   C+d+e 

Strength (response) function due to perturbation W

A+W          A*,   B+b,   C+d+e

Radiative capture reactions  

A+a           C+W(gamma) 

(Inverse process:    C+W          A+a)

Two-body scattering and reactions  

A+a           B+b



Resolvent  

This formulation is known for many years to include continuum effects
Shlomo & Bertsch,    Recently Matsuo, Khan et al., others 

It is limited to the case of single-particle in continuum, 

based on a mean field theory     

Extension to more general case is desired 

I.

ground state  



Double photoionization of two-electron atom

Exterior complex scaling 

No application yet so far in nuclear physics            

Outgoing-wave boundary condition



Continuum is made 

to damp asymptotically

Non-Hermitian, but can be diagonalyzed in L2 basis 

Stability of S(E) wrt θis examined    



L(z) is finite, hence the norm of Ψ(z) is finite, so that 
Ψ(z) can be obtained in L2 basis 

L(z) has to be computed for many z values (ER varied, EI fixed) 

to make the inversion possible

The inversion from L(z) to S(E) demands professional skill     



Test in Solvable three-body problem

Hyperscalar potential

(Numerically) Exactly solvable in Hyperspherical harmonics method

One charged particle, two neutral particles    



Electric dipole strength

CDS: calculated from continuum discretized states

CDA: calculated from CDS with tail corrected  



Lorentz integral transform method

Electric dipole strength

Set 3



Electric dipole strength

Complex scaling method



For a fully-fledged application of complex scaling method  

Next talk by W. Horiuchi

Strength functions of 4He 

using realistic nuclear interaction



To make use of bound-state technique, we define 

spectroscopic amplitude (SA)

A single-channel case α1
α2

II.  Scattering problem

Phase shift is determined from the asymptotics of SA    

with appropriate boundary condition



Equation of motion for y(r)

U(r) : a local potential chosen to make Vc-U vanish for large r   

Formal solution for y(r) with a proper asymptotics

v(r) is a regular solution.  λ is a constant to be determined Green’s function

Exact!



Diagonalize in L2 basis set to obtain dicretized energies   

and approximate wave functions   

z(r) is short-ranged, hence the exact wave function can be replaced 

with the approximate one in evaluating z(r)

λ is determined by comparing, at short distances, to the approximate y(r) 

calculated from this replacement 

Green’s function assures correct asymptotics (GFM)     

These ‘CDCC’ solutions are expected to be good in the interaction 

region but have bad asymptotics

Phase shifts are calculated at the discretized energies



α+n scattering in a single-channel calculation

microscopic, full antisymmetrization  

use of elaboratedαwave function

Comparison with R-matrix or empirical p.s. 

Effective force (C+LS) Realistic force (C+T+LS)

Minnesota



Discussion on α+n phase shifts

S-wave phase shifts are reasonable 

P-wave phase shifts are too small  

Understandable from Pauli principle

α: S-wave dominant, D-wave (< 15%) 

P-wave neutron can penetrate into α

S-wave neutron is repelled by Pauli exclusion  

αcan be distorted or excited by P-wave neutron particularly through tensor force 

This effect cannot be accounted for in a single-channel RGM (Quaglioni & Navratil)  

Similar phenomena in 3He+p scattering:  K.Arai, S.Aoyama, Y.S.,PRC81(2010) 

Jπ=1+

I=1, L=0

Ecm(MeV)

Jπ=2-

I=1, L=1

Ecm(MeV)

single-channel 

empirical  



For detailed analysis for d+d scattering 

including many distorted channels (method 1)  

Talk by S. Aoyama 

Cluster breaking effects in four nucleons scattering    

Improving the solution in the interaction region is needed    

esp. for realistic interactions

1. To add many more channels (standard approach)  

2. To solve A-body Schroedinger eq. more accurately in a confined region           

α1 α2



Two problems remain:

1. Phase shifts are obtained only at discretized energies    

Scattering energy is not under control  

2. Discretized solution is not degenerate, so that 

coupled-channels problems cannot be solved   

To fix the problems:

Enclose the system within a set of walls and 

adjust their strength to scattering energy
Only bound state solutions are needed   



Coupled-channels case

Inc. waveOut. wave

Out. wave

Closed



has to be determined     has to be given  

To reduce to a bound-state problem, add a confining potential

Solution in the confining potential

All the solutions become discrete bound states 

Both wc and uc satisfy the same eq. in the interaction region 

Tuning the strength of the confining potential in each channel    

generates the needed number of solutions with the same energy

Vcc’ is short-ranged, uc can be replaced with wc in evaluating Fc



S-matrix calculation 

can be determined in the same way as before     

A combination of               is a desired scattering solution

An example of the confining potential

Adjust Vc to obtain the required energy    



Exactly solvable 2-channel model with a Feshbach resonance    

Resonance

(ER, Γ) 

0

Δ

Ch 1

Ch 2

Δ=10

ER=7

Γ=1

J.-M.Sparenberg et al., J.Phys.A39(2006)

S-wave scattering



E = 7

Ch1-component

Ch2-component 

Comparison between the exact and GFM wave functions



Eigenphase rep.



Conclusion 

・Reducing continuum problems to a type of bound-state 

problems is discussed 

・Complex scaling method appears versatile 

・Both wave functions and S-matrix for coupled-channels 

scattering problems can be obtained using bound-state codes    

real confining potentials acting only in external region

・Correct tail behavior is ensured with Green’s function

・Application to real problems    



P-wave (K=1) phase shifts   

Numerov vs CDA

(continuum-discretized approximation)
Asymptotics corrected 

with Green’s function



Nucleon-nucleon scattering
G3RS potential   

Comparison with 

numerical solutions
3S1 + 3D1 pn scattering     

Good agreement in wide energy region



3P2 + 3F2 pp scattering     G3RS potential   

with Coulomb potential


