Two-neutron halo nuclei in one dimension - dineutron correlation and breakup reaction -

K. Hagino (Tohoku University)A. Vitturi (Padova)F. Perez-Bernal (Huelva)H. Sagawa (University of Aizu)

- Three-body model for ¹¹Li and ⁶He: Borromean nuclei and Di-neutron correlation
 One dimensional model
- 2. One dimensional model
 - Ground state properties
 - Nuclear breakup process

3. Summary

Borromean nuclei and Di-neutron correlation

Borromean nuclei: unique three-body systems

Three-body model calculations:

strong di-neutron correlation in ¹¹Li and ⁶He

 $x^2y^2\rho_2(x,y)$ for ⁶He

FIG. 1. Spatial correlation density plot for the 0^+ ground state of ⁶He. Two components—di-neutron and cigarlike—are shown schematically.

Yu.Ts. Oganessian, V.I. Zagrebaev, and J.S. Vaagen, *PRL82('99)4996*M.V. Zhukov et al., *Phys. Rep. 231('93)151*

G.F. Bertsch, H. Esbensen, Ann. of Phys., 209('91)327

K.Hagino and H. Sagawa, PRC72('05)044321

cf. di-*proton* correlation in ${}^{17}Ne = {}^{15}O + p + p$

T. Oishi, K. Hagino, and H. Sagawa, PRC82('10)024315.

K.Hagino, H. Sagawa, and P. Schuck, J. of Phys. G37('10) 064040.

How to probe the strong dineutron correlation?

•Coulomb excitations?

T. Aumann et al., PRC59('99)1252

6.0

* (indirect) evidence for dineutron correlation

How to probe the strong dineutron correlation?

•Coulomb excitations? \longrightarrow A problem: an external field is too weak

K.H., H. Sagawa, T. Nakamura, S. Shimoura, PRC80('09)031301(R)

How to probe the strong dineutron correlation?

•Coulomb excitations? •Nuclear breakup?

M. Assie et al., Eur. Phys. J. A42 ('09) 441

cf. 4-body CDCC for exclusive cross sections?

How to probe the strong dineutron correlation?

- Coulomb excitations?Nuclear breakup?
- •Pair transfer?

How to probe the strong dineutron correlation?

- Coulomb excitations?Nuclear breakup?
- •Pair transfer?

✓ Reaction mechanism?

- sequential vs simultaneous
- Q-value, angular momentum matchings
- ✓ Role of dineutron correlation (on the surface)?
- ✓Influence to other reaction processes (e.g., subbarrier fusion)?

have not yet been fully clarified

Recent experiments for transfer reaction of neutron-rich nuclei

A. Chatterjee et al., PRL101('08)032701

I. Tanihata et al., PRL100('08)192502

It is timely to construct:

a new theory of pair transfer with dineutron correlation.

 \rightarrow need a deep understanding of reaction dynamics

a simple and intuitive schematic model

One-dimensional three-body model

Two interacting neutrons in a one-dimensional potential well:

$$H = -\frac{\hbar^2}{2m}\frac{d^2}{dx_1^2} + V(x_1) - \frac{\hbar^2}{2m}\frac{d^2}{dx_2^2} + V(x_2) + v_{nn}(x_1, x_2)$$

density-dependent contact interaction:

$$v_{nn}(x, x') = -g\left(1 - \frac{1}{1 + e^{(|x| - R)/a}}\right)\delta(x - x')$$

$$\Psi_{gs}(x_1, x_2) = \sum_{n \le n'} \alpha_{nn'} \Psi_{nn'}(x_1, x_2)$$

$$\Psi_{nn'}(x_1, x_2) \propto S[\phi_n(x_1)\phi_{n'}(x_2)] \times |S = 0\rangle$$

•S = 0 state: symmetric for the spatial part of wf

Х

•*n*, *n*': the same parity

One dimensional model for a one-neutron halo nucleus (Dasso & Vitturi)

PHYSICAL REVIEW C 79, 064620 (2009)

Role of the continuum in reactions with weakly bound systems: A comparative study between the time evolution of a break-up wave function and its coupled-channel approximation

C. H. Dasso^{1,2} and A. Vitturi^{1,2}

breakup of 1n halo nucleus (comparison with CDCC)

Similar one-dimensional model for two-electron systems

He atom $(^{4}\text{He} + e^{-} + e^{-})$

 H^{-} atom (p + e^{-} + e^{-})

double ionization by intense laser fields

J.B. Watson et al., PRL78('97)1884

cf. TDH(F) for a one-dimensional system

B. Yoon and J.W. Negele, PRA16('77) 1451

PHYSICAL REVIEW A

VOLUME 16, NUMBER 4

OCTOBER 1977

Time-dependent Hartree approximation for a one-dimensional system of bosons with attractive δ -function interactions*

B. Yoon and J. W. Negele[†]

Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 29 November 1976)

The time-dependent Hartree approximation is compared with an exact solution for the scattering between two N-particle bound states in the case of a 1-dimensional system of bosons with attractive δ -function interactions. It is shown that to leading order in N, the approximation is exact, and arguments are presented relating this asymptotic agreement to the nonsaturation of the bound states.

$$H = -\frac{1}{2} \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2} - g \sum_{i< j=1}^{N} \delta(x_i - x_j)$$

Model Setup for core+2n

the strength of the pairing interaction g: adjusted so that $E_{gs} = -1 \text{ MeV}$

 $E_{cut} = 30 \text{ MeV}, R_{box} = 90 \text{ fm}$ $P_{bb}^{(gs)} = 81.2\%$

$\frac{c + n + n \quad 0 \text{ MeV}}{\frac{-0.15 \text{ MeV}}{[c + n] + n}}$

 $\frac{-1 \text{ MeV}}{[c+n+n]} \qquad \frac{-0.92 \text{ MeV}}{c+[n+n]}$

Ground state properties

two-particle density: $|\Psi_{gs}(x_1, x_2)|^2$

$$\Psi_{gs}(x_1, x_2) = \Psi_{ee}(x_1, x_2) + \Psi_{oo}(x_1, x_2)$$

$$\longrightarrow \rho_2(x_1, x_2) = |\Psi_{ee}(x_1, x_2)|^2 + |\Psi_{oo}(x_1, x_2)|^2$$

$$+ 2\Psi_{ee}(x_1, x_2)\Psi_{oo}(x_1, x_2)$$

x₁ (fm)

Nuclear Breakup Process

Time-dependent two-particle Schroedinger equation:

$$i\hbar \frac{\partial}{\partial t} \Psi(x_1, x_2, t) = [H + V_{\text{ext}}(x_1, x_2, t)] \Psi(x_1, x_2, t)$$
$$V_{\text{ext}}(x_1, x_2, t) = \sum_{i=1,2} V_c e^{-t^2/2\sigma_t^2} e^{-(x_i - x_0)^2/2\sigma_x^2}$$
$$V_c = 3 \text{ MeV}, \sigma_t = 2.1 \text{ hbar/MeV}, x_0 = 0$$

two-particle density at $t = t_{ini}$

"dineutron emission"

large (bc) component

≻Pairing: enhances the breakup

Correlated: (cc) process

≻Uncorrelated: (bc) process

 P_{cc} : 2 neutron breakup P_{bc} : 1 neutron breakup

time evolution: start with the correlated g.s. state but neglect v_{nn} during the time evolution

'fort.11' u 1:2:4

0.00025

0.0002

0,00015

0.0001

5e-05

0

40

One-dimensional three-body model for 2n halo nuclei

- ≻simple schematic model
- ≻allows detailed studies on the dynamics of 2n halo nuclei
- ≻intuitive pictures
- dineutron correlation in the ground state
- ➢nuclear breakup: enhanced 2n breakup due to pairing

emission in the same direction: 'dineutron emission'

Other applications on the agenda:

≻two-proton radioactivity

≻pair transfer

➤ subbarrier fusion of 2n halo nuclei

cf. Yabana-Suzuki, NPA ('95)