Recent development in CDCC

Kyushu Group M. Yahiro

Collaborators T. Matsumoto, T. Fukui, K. Minomo, K. Ogata, Y. Iseri, Y. Shimizu, S. Hashimoto, M. Kawai K. Kato

Scattering of unstable nucleus

- transferred reactions
- breakup reactions

CDCC

(The method of Continuum-Discretized Coupled Channels)

Review Papers

Kamimura, Yahiro, Iseri, Sakuragi, Kameyama and Kawai, PTP Suppl.89,1(1986) Austern, Iseri, Kamimura, Kawai, Rawitscher and Yahiro, Phys. Rep. 154(1987),126.

Theoretical foundation

Austern, Yahiro and Kawai, PRL 63, 2649(1989)

Austern, Kawai and Yahiro, PRC 53, 394(1996)

Numerical comparison between CDCC and Faddeev solutions

A. Deltuva, A. M. Moro, E. Cravo, F. M. Nunes, and A. C. Fonseca, Phys. Rev. C 76 (2007), 064602.

Contents

- 1. Foundation of CDCC.
- 2. Latest results of CDCC;

four-body CDCC is applied to ⁶Li and ⁶He scattering.

3. Input of CDCC Hamiltonian is optical potentials for two-body subsystems.

Construction of the microscopic optical potential.

This is discussed for proton and deuteron scattering.

1. Foundation of CDCC

Austern, Yahiro, Kawai, PRL63, 2649 (1989)

What is CDCC ?

Austern, Yahiro, Kawai, PRL63, 2649 (1989)

CDCC-equation $(E - K - V - PU_p P - PU_n P)\psi = 0$

$$PU_{\rm p}P = P \, \exp[-r_{\rm p}^2] \, P = \int d\Omega_r \, \exp[-(R - r/2)^2] = \exp[-R^2 - r^2/4] \, j_0(Rr)$$

$$(E - K - V(r) - U_{p} - U_{n})\psi = 0$$

Faddeev decomposition

Distorted Faddeev equations

 $[E - K - V \qquad]\psi_{d} = 0$ $[E - K - U_{p}]\psi_{p} = (U_{p} \qquad)\psi_{d} + U_{p}\psi_{n}$ $[E - K - U_{n}]\psi_{n} = (U_{n} \qquad)\psi_{d} + U_{n}\psi_{p}$

Comparison between CDCC and Faddeev solutions

d+¹²C at 56 MeV Elastic scattering

A. Deltuva, A. M. Moro, E. Cravo, F. M. Nunes, and A. C. Fonseca, Phys. Rev. C 76 (2007), 064602.

¹²C(d,pn) at 56 MeV

2. Four-body CDCC

T. Matsumoto

T. Matsumoto, K. Kato and M. Yahiro, arXiv:1006.0668 [nucl-th].

⁶Li+²⁰⁹Bi scattering at 30 MeV

Four-body CDCC

Four-body Schrodinger equation n $(E - K - U - H_6) | \Psi >= 0$ $U = U_{pT} + U_{nT} + U_{HeT}$ $\left\langle \Phi_{i} \mid H_{6} \mid \Phi_{i} \right\rangle = e_{i} \delta_{ij}$ Model space $P = \sum_{i} |\Phi_{i} \rangle \langle \Phi_{i}|$ ⁴He Target

CDCC equation

$$P(E - K - U - H_6)P \mid \Psi \ge 0$$

⁶Li+²⁰⁹Bi scattering at 30 MeV

Four-body $(n+p+^{4}He+A)$ CDCC

Three-body $(d+^{4}He+A)$ CDCC

⁶He elastic scattering

Four-body Schrodinger equation

$$(E - K - U - H_{6}) | \Psi \rangle$$

$$U = U_{nT} + U_{nT} + U_{HeT}$$
Gaussian basis functions
$$\langle \Phi_{i} | H_{6} | \Phi_{j} \rangle = e_{i} \delta_{ij}$$
Model space
$$P = \sum_{i} | \Phi_{i} | \Phi_{i} | \Phi_{i} \rangle = e_{i} \delta_{ij}$$
CDCC equation
$$P(E - K - U - H_{6}) P | \Psi$$

Elastic Cross Section

For *elastic scattering*, CDCC well reproduces the experimental data.

Breakup Cross Section of ⁶He scattering

⁶He+¹²C scattering at 240 MeV/nucl.

New Smoothing Procedure with Complex Scaling Method

T. Matsumoto, K. Kato and M. Yahiro, arXiv:1006.0668 [nucl-th].

Response function

 $\mathcal{R}(E) = \int d\xi d\xi' \langle \Psi^{(+)}(\xi, \mathbf{R}) | V^* | \chi_C^{(-)}(\mathbf{R}) \rangle_{\mathbf{R}} \mathcal{G}^{(-)}(E, \xi, \xi') \langle \chi_C^{(-)}(\mathbf{R}) | V | \Psi^{(+)}(\xi, \mathbf{R}) \rangle_{\mathbf{R}}$

$$E > 0 \qquad G^{(-)}(E) = \frac{1}{E - H_6 - i\varepsilon}$$

New Smoothing Procedure with Complex Scaling Method

Green's function with Complex-Scaling Method

$$\mathcal{G}^{(-)}(E,\xi,\xi') \approx \sum_{\nu} \sum_{i,j} |\Phi_i\rangle \frac{\langle \Phi_i | U^{-\theta} | \Phi_{\nu}^{\theta} \rangle \langle \Phi_{\nu}^{\theta} | U^{\theta} | \Phi_j \rangle}{E - E_{\nu}^{\theta}} \langle \Phi_j |$$

Response function

$$\mathcal{R}(E) = \int d\xi d\xi' \langle \Psi^{(+)}(\xi, \mathbf{R}) | V^* | \chi_C^{(-)}(\mathbf{R}) \rangle_{\mathbf{R}} \mathcal{G}^{(-)}(E, \xi, \xi') \langle \chi_C^{(-)}(\mathbf{R}) | V | \Psi^{(+)}(\xi, \mathbf{R}) \rangle_{\mathbf{R}}$$

$$\mathcal{R}(E) = \sum_{\nu} \sum_{i,j} \langle \Psi^{(+)} | V^* | \chi_C^{(-)} \Phi_i \rangle \frac{\langle \Phi_i | U^{-\theta} | \Phi_{\nu}^{\theta} \rangle \langle \tilde{\Phi}_{\nu}^{\theta} | U^{\theta} | \Phi_j \rangle}{E - E_{\nu}^{\theta}} \langle \Phi_j \chi_C^{(-)} | V | \Psi^{(+)} \rangle$$

T-matrix calculated by CDCC

Breakup Spectrum

$$\frac{d\sigma}{dE} = \frac{1}{\pi} \operatorname{Im} \sum_{\nu} \sum_{i,j} T_i^{\text{CDCC}\dagger} \frac{\langle \Phi_i | U^{-\theta} | \Phi_{\nu}^{\theta} \rangle \langle \tilde{\Phi}_{\nu}^{\theta} | U^{\theta} | \Phi_j \rangle}{E - E_{\nu}^{\theta}} T_j^{\text{CDCC}}$$

Convergence of Breakup-spectrum (2+)

⁶He+¹²C scattering @ 240 MeV/nucl.

Coupling potential:

> N-¹²C potential folded with ⁶He transition densities

➤Without Coulomb breakup

Calculation:

- ➤ non-relativistic
- Coupled-channel calculation

Exp. data from PRC59, 1252 (1999), T. Aumann et al.

$$B(E1;n) = \sum_{\mu,m} |\langle \hat{\Phi}_{n1m} | \mathcal{O}(E1) | \Phi_0 \rangle|^2$$

T. Egami, T. Matsumoto, K. Ogata and M. Yahiro, Prog. Theor. Phys. 121(2009), 789-807.

Papers on 4-body CDCC

 Kyushu-group

 Kyushu-group
 Matsumoto, E. Hiyama, K. Ogata, Y. Iseri, M. Kamimura, S. Chiba and M. Yahiro, Phys. Rev. C70(2004), 061601.
 Egami, T. Matsumoto, K. Ogata and M. Yahiro, Prog. Theor. Phys. 121(2009), 789-807.
 Matsumoto, T. Egami, K. Ogata and M. Yahiro, Prog. Theor. Phys. 121(2009), 885-894.

2) Another group

M. Rodriguez-Gallardo, J. M. Arias, J. Gomez-Camacho, R. C. Johnson, A. M. Moro,
I. J. Thompson, and J. A. Tostevin, Phys. Rev. C 77, 064609 (2008).
M. Rodriguez-Gallardo, J. M. Arias, J. Gomez-Camacho, A. M. Moro, I. J. Thompson, and J. A. Tostevin, Phys. Rev. C 80, 051601(R) (2009).

3. Microscopic CDCC

K. Minomo

K. Minomo, K. Ogata, M. Kohno, Y. R. Shimizu, and M. Yahiro, J. Phys. G (arXiv:nucl-th0911.1184)

M. Yahiro, K. Minomo, K. Ogata, M. Kawai, Prog. Theor. Phys., 120(2008), 767

Deuteron scattering

Microscopic optical potential for Nucleon-nucleus scattering

Nucleon-nucleus folding potential

G-matrix: K. Amos et al., (Melbourne group) Adv. Nucl. Phys. Vol.25 (2000) 275

 $\left\{ \right.$

Bonn-B NN interaction + phenomenological imaginary potential. Hatree-Fock cal. with Gogny-force (D1S)

The structure of stable nuclei.

$$g_{0j} = g(r_{0j})(1 + P_{EX})$$

$$\int$$

$$\int$$

$$\left[-\frac{\hbar^2}{2\mu} \nabla_R^2 + U^{\text{DR}}(\mathbf{R}) + V_c(R) \,\delta_{-1/2}^{\nu_1} - E \right] \chi_{\mathbf{K},\nu_1}(\mathbf{R}) = \int U^{\text{EX}}(\mathbf{R},\mathbf{r}) \chi_{\mathbf{K},\nu_1}(\mathbf{r}) \,d\mathbf{r}$$

Schroedinger equation for proton scattering

Proton scattering from ⁹⁰Zr

The Brieva-Rook localization

Nucl. Phys. A291,317

K. Minomo, K. Ogata, M. Kohno, Y.R. Shimizu, M. Yahiro, arXiv:0911.1184 [nucl-th]

^{6,8}He scattering from proton target

Table of binding energies

⁶He ⁸He exp 29.268 31.408 HF 29.466 31.905

Hatree-Fock cal. with Gogny-force (D1S)

⁶He+p scattering

⁸He+p scattering

Application

☐ For deuteron induced reaction

$$\left[K + h_{pn} + h_{\mathrm{T}} + \sum_{j \in \mathrm{T}} \left(\tau_{pj} + \tau_{nj}\right) - E\right] \Psi = 0$$

Optical potentials as an input

$$U_{pT} = \left\langle \varphi_{T} \right| \sum_{j \in T} \tau_{pj} \left| \varphi_{T} \right\rangle$$
$$U_{nT} = \left\langle \varphi_{T} \right| \sum_{j \in T} \tau_{nj} \left| \varphi_{T} \right\rangle$$

✓ non-local potential complicated

 \checkmark localized potential (BR method) useful

✓ Continuum-Discretized Coupled-Channels method (CDCC)

It is a standard direct reaction theory to describe real and virtual breakup.

d+⁵⁸Ni elastic scattering

Summary

- 1. CDCC is an accurate method for treating the projectile breakup process. The Austern-Yahiro-Kawai theory gives a theoretical foundation of CDCC.
- 2. Four-body CDCC is feasible also for four-body systems. In principle, this formulation is applicable for N-body system.
- 3. Microscopic non-local nucleon-nucleus optical potential can be localized with good accuracy by the Brieva-Rook method. CDCC with the local microscopic optical potential well describes the deuteron scattering.