# Moti collettivi (flow) in collisioni di ioni pesanti

#### Freeze-out chimico e freeze-out termico



#### Freeze out termico

- Cessano le interazioni elastiche
- Si fissa la dinamica delle particelle ("momentum spectra")

 Per caratterizzare il freeze-out termico si studiano le distribuzioni di impulso trasverso (p<sub>T</sub>) delle particelle prodotte nella collisione

# Distribuzioni di p<sub>T</sub>

 Le distribuzioni in impulso trasverso (p<sub>T</sub>) delle particelle prodotte nella collisione permettono di estrarre importanti informazioni sul sistema creato nella collisione



```
A basso p<sub>T</sub> (<≈ 1 GeV/c ):
```

- I meccanismi di produzione delle particelle sono soft
- ✓ Le distribuzioni 1/p<sub>T</sub>·dN/dp<sub>T</sub>
   hanno un andamento esponenziale decrescente alla Boltzmann praticamente indipendente dall'energia √s

Ad alto p<sub>T</sub> (>>1 GeV/c):

- I meccanismi di produzione delle particelle sono hard
- ↓ Le distribuzioni 1/p<sub>T</sub>·dN/dp<sub>T</sub> si distaccano dall'andamento esponenziale e seguono una "legge di potenza"
   .

# Sorgente termica stazionaria

• Distribuzione di momento delle particelle prodotte da una sorgente termica con temperatura T:

$$E\frac{d^{3}N}{d^{3}p} = \frac{dN}{p_{T}dp_{T}d\phi dy} = \frac{g_{i}V}{(2\pi)^{3}}E\frac{1}{e^{(E-\mu_{i})/T}\pm 1}$$

➡ Dove:

V = volume,

g<sub>i</sub> = fattore di generazione di spin,

 $\mu_i$  = potenziale chimico della particella di specie i

il + è per i fermioni, il – per i bosoni

➡ Lo spettro E d<sup>3</sup>N/d<sup>3</sup>p è Lorentz invariante
 ➡ NOTA:

$$p_z = m_T \sinh y \quad \Rightarrow \quad \frac{dp_z}{dy} = m_T \cosh y \quad \Rightarrow \quad dp_z = Edy$$

p<sub>T</sub> e m<sub>T</sub>

• Dalla definizione di massa trasversa si ha:

$$\frac{dm_T}{dp_T} = \frac{d}{dp_T} \sqrt{m^2 + p_T^2} = \frac{p_T}{\sqrt{m^2 + p_T^2}} = \frac{p_T}{m_T} \quad \Rightarrow \quad m_T dm_T = p_T dp_T$$

• E quindi:

$$\frac{dN}{m_T dm_T} = \frac{dN}{p_T dp_T}$$

 Gli spettri in p<sub>T</sub> vengono comunemente espressi in termini di massa trasversa

 $\Rightarrow$  m<sub>T</sub> è l'energia della particella nel piano trasverso

#### o di m<sub>T</sub>-m

rightarrow che è l'enegia cinetica nel piano trasverso ( $E_T^{KIN}$ )

# Sorgente termica stazionaria

• Distribuzione di momento delle particelle prodotte da una sorgente termica con temperatura T:

$$E\frac{d^{3}N}{d^{3}p} = \frac{dN}{p_{T}dp_{T}d\phi dy} = \frac{dN}{m_{T}dm_{T}d\phi dy} = \frac{g_{i}V}{(2\pi)^{3}}E\frac{1}{e^{(E-\mu_{i})/T}\pm 1}$$

• Sviluppando in serie di Taylor:

$$\frac{1}{e^{(E-\mu_i)/T} \pm 1} = \frac{e^{-(E-\mu_i)/T}}{1 \pm e^{-(E-\mu_i)/T}} = e^{-(E-\mu_i)/T} \sum_{n=0}^{\infty} (\mp 1)^n e^{-n(E-\mu_i)/T} = \sum_{n=1}^{\infty} (\mp 1)^{n+1} e^{-n(E-\mu_i)/T}$$

 Considerando solo il primo termine dello sviluppo in serie si riduce alla distribuzione di Boltzmann:

$$E\frac{d^{3}N}{d^{3}p} = \frac{dN}{p_{T}dp_{T}d\phi dy} = \frac{dN}{m_{T}dm_{T}d\phi dy} \approx \frac{g_{i}V}{(2\pi)^{3}}Ee^{-(E-\mu_{i})/T}$$

# Sorgente termica stazionaria

 Distribuzione di momento delle particelle prodotte da una sorgente termica con temperatura T:

$$E\frac{d^{3}N}{d^{3}p} = \frac{dN}{m_{T}dm_{T}dyd\phi} = \frac{dN}{p_{T}dp_{T}dyd\phi} \approx \frac{g_{i}V}{(2\pi)^{3}}Ee^{-(E-\mu_{i})/T}$$

 La distribuzione di momento trasverso (o di m<sub>T</sub>) si ottiene integrando su rapidità e angolo azimutale:

$$\frac{dN}{m_T dm_T} = \frac{g_i V}{(2\pi)^3} \int dy d\phi \, E e^{-(E-\mu_i)/T} = \frac{g_i V}{(2\pi)^2} m_T e^{\mu_i/T} \int dy \cosh y \, e^{-m_T \cosh y/T}$$

$$= \frac{g_i V}{(2\pi)^2} m_T e^{\mu_i/T} K_1\left(\frac{m_T}{T}\right) \xrightarrow{m_T \gg T} V' \sqrt{m_T} e^{-m_T/T}$$

Andamento di tipo esponenziale decrescente per energie grandi rispetto alla temperatura della sorgente

# m<sub>T</sub> scaling

 Nel caso di sorgente termica a riposo, le distribuzioni in massa trasversa hanno la stessa forma per tutti gli adroni (m<sub>T</sub> scaling)



$$\frac{dN}{m_T dm_T} \propto \sqrt{m_T} e^{-\frac{m_T}{T_{slope}}}$$

- Osservato con buona
   approssimazione in collisioni pp e
   di nuclei leggeri a basso √s
  - Il coefficiente T<sub>slope</sub> assume il valore di ≈167 MeV per tutte le particelle
  - Con qualche complicazione: ad esempio i decadimenti di risonanze inducono una deviazione dall'andamento esponenziale nello spettro dei pioni a basso m<sub>T</sub>

# m<sub>T</sub> scaling

 Nel caso di sorgente termica a riposo, le distribuzioni in massa trasversa hanno la stessa forma per tutti gli adroni (m<sub>T</sub> scaling)



$$\frac{dN}{m_T dm_T} \propto \sqrt{m_T} e^{-\frac{m_T}{T_{slope}}}$$

- <u>Interpretazione</u>: gli spettri sono spettri termici alla Boltzmann e T<sub>slope</sub> rappresenta la temperatura a cui avviene l'emissione delle particelle
  - Se estendiamo quest'idea al caso dell'evoluzione della fireball creata in collisioni di ioni, T<sub>slope</sub> potrebbe rappresentare la temperatura del sistema al momento del thermal freezeout (T<sub>fo</sub>)



#### Espansione collettiva della fireball

- Il modello di sorgente termica a riposo non rappresenta però il caso in cui in collisioni di ioni ad alta energia si crea una fireball di Plasma di Quark e Gluoni
- II QGP è (per definizione) uno stato termalizzato di quark e gluoni deconfinati

Ha pertanto una pressione termica

• I gradienti di pressione rispetto al vuoto circostante causano una espansione collettiva della fireball

Una conseguenza inevitabile della formazione del QGP è la presenza di moti collettivi (collective flow)

- Il collective flow modifica le distribuzioni di impulso delle particelle prodotte
  - ⇒Nel piano trasverso la modifica delle distribuzioni in p<sub>T</sub> e m<sub>T</sub> rompe l'm<sub>T</sub> scaling

## Rottura dell'm<sub>T</sub> scaling in AA (1)



# Rottura dell'm<sub>T</sub> scaling in AA (2)



- Per ogni particella <p<sub>T</sub>> aumenta con la centralità

### Rottura dell'm<sub>T</sub> scaling in AA (3)

- A basso p<sub>T</sub> (p<sub>T</sub><m), T<sub>slope</sub> dipende linearmente dalla massa della particella
- Interpretazione: c'è un moto collettivo di tutte le particelle sovrapposto al moto di agitazione termica nel piano trasverso con velocità v<sub>⊥</sub> per cui:

$$T_{slope} = T_{fo} + \frac{1}{2}mv_{\perp}^2$$



# Flow in collisioni di ioni pesanti

- Flow = moto collettivo delle particelle sovrapposto al moto di agitazione termica
  - Il moto collettivo è dovuto alle alte pressioni che si generano quando si comprime e si riscalda la materia nucleare
  - La velocità di flusso di un elemento di volume del sistema è data dalla somma delle velocità delle particelle contenute in esso
  - Il flusso collettivo è una correlazione tra la velocità v di un elemento di volume e la sua posizione nello spazio-tempo



#### Blast wave model

- Modello molto semplice per descrivere gli effetti moto collettivo (flow) sugli spettri delle particelle
  - Permette di analizzare gli spettri misurati per le varie specie adroniche, valutare la presenza di moti collettivi e separarli dal moto casuale di agitazione termica
- Si assume che ogni elemento di volume della fireball sia:
  - In equilibrio termico a una temperatura T
     -> è quindi una sorgente termica
  - Sottoposto a un **boost** in direzione **radiale** con velocità v<sub>1</sub>(r)
- Lo spettro risultante è pertanto una sovrapposizione di sorgenti termiche con diverse velocità di espansione collettiva radiale



#### Velocità del flusso collettivo

- Si considera un volume infinitesimo centrato in un punto spaziotemporale x all'interno della fireball
- Si sommano i quadri-impulsi di tutte le particelle contenute in quel volume
  - Dal tri-momento totale P e l'energia P<sup>0</sup>, si definisce la velocità di flusso collettivo nell'elemento di volume: v(x)=P/P<sup>0</sup>
  - Il flusso collettivo è una correlazione tra il momento delle particelle e la loro posizione nello spazio-tempo (x-p correlation)
  - ⇒ Si definisce una **quadrivelocità u**<sup>µ</sup> come:

$$u^{\mu}(x) = \gamma(1, \mathbf{v})$$
 con  $\gamma(x) = \frac{1}{\sqrt{1 - \mathbf{v}^2(x)}}$  [ $c = 1$ ]

La velocità v viene separata tra componente longitudinale (v<sub>L</sub>, lungo il fascio) e quella trasversa v<sub>⊥</sub> detta transverse flow
 ⇒ La velocità v<sub>⊥</sub> può dipendere dall'angolo azimutale φ.
 ⇒ La media di v<sub>⊥</sub> sull'azimuth si chiama radial flow.

X

#### Distribuzione di particelle

- Si considera una fireball in equilibrio termico che si espande con un moto collettivo
- In un punto spazio-temporale x all'interno della fireball la distribuzione di particelle dipende da:
  - $\Rightarrow$ Quadrivelocità locale del flusso collettivo u<sup>µ</sup>(x)
  - ➡ Temperatura locale T(x)

$$\begin{split} f_i(x,p) &= \frac{g_i}{e^{[p^\mu u_\mu(x) - \mu_i]/T(x)} \pm 1} \\ &= g_i \sum_{n=1}^{\infty} (\mp 1)^{n+1} e^{-n[p^\mu u_\mu(x) - \mu_i]/T(x)} \end{split}$$

Il termine p<sup>µ</sup>u<sub>µ</sub>(x) è l'energia della particella nel sistema in cui la cella di fluido è a riposo (local heat-bath frame) boostato nel sistema dell'osservatore (laboratory) con la quadrivelocità u<sup>µ</sup>(x) della cella di fluido nel punto x



### Flusso di particelle

- Per ricavare lo spettro delle particelle di specie i prodotte nella collisione si definisce una superficie tridimensionale  $\Sigma$  e si contano le particelle che la attraversano
- La corrente di particelle di specie i con momento compreso tra p e p+d<sup>3</sup>p è:

$$j^{\mu} = f_i(x, p)d^3p \frac{p^{\mu}}{E}$$

➡ Dove f<sub>i</sub>(x,p) è la distribuzione (Bose-Einstein o Fermi-Dirac) boostata delle particelle di specie i e p<sup>µ</sup>/E la quadri-velocità

• Il flusso di particelle attraverso la superficie  $\Sigma$  è:

$$N = \int_{\Sigma} d^{3}\sigma_{\mu} j^{\mu} \qquad \Rightarrow \qquad E \frac{d^{3}N}{d^{3}p} = \int_{\Sigma} d^{3}\sigma_{\mu} f_{i}(x,p) p^{\mu}$$

⇒ Dove  $d^3\sigma_\mu$  è un quadrivettore perpendicolare a Σ nel punto x e diretto verso l'esterno

#### Superficie di freeze-out

• L'equazione ottenuta è detta formula di Cooper-Frye:

$$E\frac{d^{3}N}{d^{3}p} = \frac{dN}{p_{T}dp_{T}d\phi dy} = \frac{dN}{m_{T}dm_{T}d\phi dy} = \int_{\Sigma} d^{3}\sigma_{\mu}f_{i}(x,p)p^{\mu}$$

- Diverse scelte possibili per la superficie  $\Sigma$  purché racchiuda tutti i possibili coni-luce che emergono dal punto della collisione
  - $\Rightarrow \mbox{Due superfici } \Sigma_1 \mbox{ e } \Sigma_2 \mbox{ danno lo stesso numero di particelle } N_i \mbox{ se la funzione di distribuzione } f_i(x,p) \mbox{ evolve da } \Sigma_1 \mbox{ a } \Sigma_2 \mbox{ con interazioni che preservano il numero di particelle di specie i}$
  - ⇒ Due superfici  $\Sigma_1$  e  $\Sigma_2$  danno lo stesso spettro di impulsi per le particelle di specie i se f<sub>i</sub>(x,p) evolve da  $\Sigma_1$  a  $\Sigma_2$  per free-streaming (= senza interazioni)
- Per calcolare lo spettro delle particelle prodotte nella collisione si sceglie Σ come la "smallest and earliest" superficie che racchiude tutti gli scattering avvenuti nella fireball
  - Viene chiamata pertanto "last scattering surface" o "freeze-out surface"

#### Assunzioni: Bjorken flow

 Invarianza per boost lungo la coordinata longitudinale (Bjorken flow)

Si utilizzano quindi le variabili tempo proprio e la rapidità



- La rapidità longitudinale del fluido y<sub>L</sub> (che caratterizza il momento medio longitudinale p<sub>L</sub> delle particelle prodotte nel punto x) coincide con la "space-time rapidity" η, che definisce il punto x nello spazio tempo
- ⇒Il quadrivettore velocità della cella di fluido (flow) è quindi:

$$u^{\mu} = \frac{1}{\sqrt{1 - v_{\perp}^2}} (\cosh \eta \, , v_x, v_y, v_L) = \gamma_{\perp} (\cosh \eta \, , v_x, v_y, \sinh \eta)$$

#### Assunzioni: freeze-out istantaneo

- Freeze-out (= disaccoppiamento) istantantaneo nella direzione radiale al tempo proprio τ<sub>fo</sub> (prescrizione di Cooper-Frye)
  - La transizione da uno stato in cui la fireball è interagente e in equilibrio termodinamico a uno stato di particelle che si espandono liberamente (free streaming) avviene in un intervallo di tempo infinitesimo
  - Durante questo intervallo di tempo infinitesimo la distribuzione delle particelle nello spazio delle fasi non subisce cambiamenti sostanziali e si può quindi approssimare la f<sub>i</sub>(x,p) sulla superficie dell'ultimo scattering con il valore di equilibrio termico che aveva in un'istante immediatamente precedente il freeze-out

## Blast wave model: superficie di freeze-out

- Nel caso di Bjorken flow (longitudinale), considerando una superficie di freeze-out cilindrica al tempo proprio  $\tau_{fo}$ :  $\Sigma_{fo}^{\mu} = (t_{fo}, R \cos \phi, R \sin \phi, z_{fo}) = (\tau_{fo} \cosh \eta, R \cos \phi, R \sin \phi, \tau_{fo} \sinh \eta)$
- Il vettore normale alla superficie è:

 $d^{3}\sigma_{\mu} = (dxdydz, 0, 0, dxdydt) = (\tau_{fo} \cosh \eta, 0, 0, \tau_{fo} \sinh \eta) r dr d\phi d\eta$ 

- ⇒ Data l'assunzione di freeze-out istantaneo in direzione radiale, per cui  $\tau_{fo}$  non dipende da x e y (r e  $\phi$ )
- $\Rightarrow$  E dato che:

$$dz = \frac{dz}{d\eta}d\eta + \frac{dz}{d\tau}d\tau = \frac{d}{d\eta}(\tau_{fo}\sinh\eta)d\eta = \tau_{fo}\cosh\eta\,d\eta$$

$$dt = \frac{dt}{d\eta}d\eta + \frac{dt}{d\tau}d\tau = \frac{d}{d\eta}(\tau_{fo}\cosh\eta)d\eta = \tau_{fo}\sinh\eta\,d\eta$$

 $\Rightarrow$ e che in caso di freeze-out istantaneo si ha d $\tau$ =0

# Blast wave model: formula di Cooper-Frye (1)

L'energia della particella p<sub>µ</sub>u<sup>µ</sup> è data da:

$$p^{\mu} = (m_T \cosh y, p_x, p_y, m_T \sinh y)$$
$$u^{\mu} = \frac{1}{\sqrt{1 - v_{\perp}^2}} (\cosh \eta, v_x, v_y, v_L) = \gamma_{\perp} (\cosh \eta, v_x, v_y, \sinh \eta)$$
$$p_{\mu} u^{\mu} = \gamma_{\perp} (m_T \cosh(y - \eta) - \vec{p}_T \cdot \vec{v}_{\perp}) = \gamma_{\perp} (m_T \cosh(y - \eta) - p_T v_{\perp} \cos \phi)$$

 $\Rightarrow$  Dove  $\phi$  è l'angolo tra la particella emessa e la direzione del flow

• Il prodotto  $p^{\mu}d^{3}\sigma_{\mu}$  che appare nella formula di Cooper Frye è:  $p^{\mu} = (m_{T}\cosh y, p_{x}, p_{y}, m_{T}\sinh y)$   $d^{3}\sigma_{\mu} = (\tau_{fo}\cosh\eta, 0, 0, \tau_{fo}\sinh\eta)rdrd\phi d\eta$   $p^{\mu}d^{3}\sigma_{\mu} = \tau_{fo}m_{T}(\cosh\eta\cosh y - \sinh\eta\sinh y)rdrd\phi d\eta =$  $= \tau_{fo}m_{T}\cosh(y - \eta)rdrd\phi d\eta$ 

## Blast wave model: formula di Cooper-Frye (2)

• Ricapitolando:

$$p_{\mu}u^{\mu} = \gamma_{\perp}(m_T \cosh(y - \eta) - p_T v_{\perp} \cos \phi)$$

$$p^{\mu}d^{3}\sigma_{\mu} = \tau_{fo}m_{T}\cosh(y-\eta)rdrd\phi d\eta$$

Sostituendo nella formula di Cooper-Frye:

$$E\frac{d^{3}N}{d^{3}p} = \frac{dN}{p_{T}dp_{T}d\phi dy} = \int_{\Sigma} d^{3}\sigma_{\mu}f_{i}(x,p)p^{\mu}$$
$$= \frac{g_{i}\tau_{fo}}{(2\pi)^{3}}\int rdr\int d\eta \int d\phi m_{T}\cosh(y-\eta)\sum_{n=1}^{\infty}(\mp 1)^{n+1}e^{-n\left[\frac{\gamma_{\perp}(m_{T}\cosh(y-\eta)-p_{T}v_{\perp}\cos\phi)-\mu_{i}}{T(x)}\right]}$$

 Dove T(x) è valutata sulla superficie di freeze-out, quindi T(x)=T<sub>fo</sub> indipendentemente da x

#### Blast wave model: integrazione

• Integrazione della formula di Cooper-Frye:

$$\begin{split} E\frac{d^{3}N}{d^{3}p} &= \frac{dN}{p_{T}dp_{T}d\phi dy} = \int_{\Sigma} d^{3}\sigma_{\mu}f_{i}(x,p)p^{\mu} = \\ &= \frac{g_{i}\tau_{fo}}{(2\pi)^{3}} \sum_{n=1}^{\infty} (\mp 1)^{n+1} \int_{0}^{R} rdr \, e^{n\frac{\mu_{i}}{T_{fo}}} \int_{0}^{\infty} d\eta m_{T} \cosh(y-\eta) e^{-n\left[\frac{\gamma_{\perp}m_{T}\cosh(y-\eta)}{T_{fo}}\right]} \int_{0}^{2\pi} d\phi e^{n\left[\frac{\gamma_{\perp}p_{T}v_{\perp}\cos\phi}{T_{fo}}\right]} = \\ &= \frac{g_{i}\tau_{fo}}{(2\pi)^{3}} \sum_{n=1}^{\infty} (\mp 1)^{n+1} \int_{0}^{R} rdr \, e^{n\frac{\mu_{i}}{T_{fo}}} \int_{0}^{\infty} d\eta m_{T} \cosh(y-\eta) e^{-n\left[\frac{\gamma_{\perp}m_{T}\cosh(y-\eta)}{T_{fo}}\right]} I_{0}\left(n\frac{\gamma_{\perp}p_{T}v_{\perp}}{T_{fo}}\right) = \\ &= \frac{g_{i}\tau_{fo}}{(2\pi)^{3}} \sum_{n=1}^{\infty} (\mp 1)^{n+1} \int_{0}^{R} rdr \, e^{n\frac{\mu_{i}}{T_{fo}}} m_{T}K_{1}\left(n\frac{\gamma_{\perp}m_{T}}{T_{fo}}\right) I_{0}\left(n\frac{\gamma_{\perp}p_{T}v_{\perp}}{T_{fo}}\right) = \end{split}$$

Dove si sono usate le definizioni delle funzioni di Bessel:

$$I_0(z) = \frac{1}{2\pi} \int_0^{2\pi} d\phi e^{z \cos \phi} \qquad K_1(z) = \int_0^{\infty} dx \cosh x \, e^{-z \cosh x}$$

#### Blast wave model: formula

#### Si trascurano i termini con n>1

Cioè si usa una Maxwell-Boltzmann trascurando gli effetti quantistici

• Si assume un profilo radiale di velocità (funzione di r) dato da:

$$v_{\perp}(r) = v_s \left(\frac{r}{R}\right)^k$$

 $\Rightarrow$  Dove v<sub>s</sub> è la velocità sulla superficie di freeze-out

• Si introduce la rapidità di flusso radiale  $\rho(r)$  definita come:

$$v_{\perp}(r) = \tanh \rho(r)$$

➡ Che implica:

$$\gamma_{\perp}(r) = \frac{1}{\sqrt{1 - \tanh^2 \rho(r)}} = \cosh \rho(r) \qquad ; \qquad v_{\perp}(r)\gamma_{\perp}(r) = \sinh \rho(r)$$

• Si ottiene quindi la formula della blast wave:

$$E\frac{d^{3}N}{d^{3}p} = \frac{dN}{p_{T}dp_{T}d\phi dy} \propto \int_{0}^{R} r dr m_{T} K_{1}\left(\frac{m_{T}\cosh\rho\left(r\right)}{T_{fo}}\right) I_{0}\left(\frac{p_{T}\sinh\rho\left(r\right)}{T_{fo}}\right)$$

⇒ Che ha T<sub>fo</sub>, v<sub>s</sub> e k come parametri

#### Blast wave model: spettri

$$\frac{dN}{p_T dp_T d\phi dy} \propto \int_0^R r dr m_T K_1 \left(\frac{m_T \cosh \rho (r)}{T_{fo}}\right) I_0 \left(\frac{p_T \sinh \rho (r)}{T_{fo}}\right) \qquad \text{constraints}$$

 $\operatorname{con} \rho(r) = \tanh^{-1} v_{\perp}(r) \quad ; \quad v_{\perp}(r) = v_s \left(\frac{r}{R}\right)^k$ 

Caso di **velocità costante**: k=0; v<sub> $\perp$ </sub>(r)=v<sub> $\perp$ </sub>

- Per v<sub>1</sub>=0 si ritrova l'm<sub>T</sub>-scaling
- II radial flow rompe I'm<sub>T</sub>-scaling a basso p<sub>T</sub> (p<sub>T</sub><<m)</li>

Si può ricavare che lo spettro per p<sub>T</sub><<m è circa esponenziale con:

$$T_{slope} \approx T_{fo} + \frac{1}{2}m\langle v_{\perp}\rangle^2 \quad \text{per } p_T \ll m$$

$$T_{slope} \approx T_{fo} \sqrt{\frac{1 + v_{\perp}}{1 - v_{\perp}}} \quad \text{per } p_T \gg m$$





#### 

# **Radial Flow all'SPS**



 Il radial flow rompe l' "m<sub>T</sub> scaling" a bassi p<sub>T</sub>

Х

- Un fit agli spettri di
  particelle identificate con
  il blast-wave model
  permette di separare la
  componente termica dal
  moto collettivo
- In collisioni centrali alla massima energia dell'SPS (√s=17 GeV):
  - ⇔ T<sub>fo</sub> ≈ 120 MeV

$$\Rightarrow \beta_{\perp} = 0.50$$
 30

# **Radial Flow a RHIC**



y  $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$   $\downarrow$ 

- Il radial flow rompe l' "m<sub>T</sub> scaling" a bassi p<sub>T</sub>
- Un fit agli spettri di particelle identificate con il blast-wave model permette di separare la componente termica dal moto collettivo
  - In collisioni AuAu centrali alla massima energia di RHIC (√s=200 GeV):

 $\Rightarrow T_{fo} \approx 110 \pm 23 \text{ MeV}$  $\Rightarrow \beta_{\perp} = 0.7 \pm 0.2$ 

#### Radial flow a LHC (1)





- Spettri misurati per pioni, Kaoni e protoni
- Fit simultaneo con il modello a blast-wave per estrarre  $T_{fo}$  e  $\beta_{\perp}$

## Radial flow a LHC (2)



- Le distribuzioni in p<sub>T</sub> diventano più "piatte" (più "hard") al crescere della massa della particella e al crescere della centralità della collisione
  - Effetto della combinazione tra moto di agitazione termica (che dipende dalla temperatura di freeze-out) e moto collettivo (radial flow) che dipende dalla massa della particella e dai gradienti di pressione

#### Radial flow a RHIC e LHC



 Spettri misurati a LHC sono più hard di quelli misurati a RHIC

⇒Radial flow più forte a LHC



 Dal fit agli spettri si vede che la velocità del radial flow è maggiore del 10% in collisioni centrali a LHC rispetto a collisioni centrali a RHIC

#### Freeze-out chimico e freeze-out termico



### Evoluzione dinamica del sistema

- I fit agli spettri in  $p_T$  permettono di ricavare la temperatura  $T_{fo}$  e la velocità di espansione radiale  $\beta_{\perp}$  al momento del thermal freeze-out e indicano che:
  - Ia fireball creata in una collisione di ioni attraversa il freeze-out termico a una temperatura di 100-130 MeV
  - Nell'istante del freeze-out si trova in uno stato di rapida espansione radiale collettiva, con una velocità dell'ordine di 0.5-0.7 volte la velocità della luce
- ATTENZIONE: i valori di  $T_{fo} e \beta_{\perp}$  sono i risultati di un fit agli spettri e non è a priori garantito che i loro valori abbiano senso dal punto di vista fisico
  - ➡ Per capire se i valori di temperatura di freeze-out e di velocità di flusso radiale hanno un significato fisico, bisogna verificare che siano riprodotti da modelli teorici basati sull'evoluzione dinamica del sistema → FLUIDODINAMICA
### Fluidodinamica

# Fluidodinamica

- Come la termodinamica, la fluidodinamica cerca di spiegare un sistema usando variabili macroscopiche (temperatura, pressione ...) che riflettono il comportamento dei componenti microscopici del sistema
- Parametri microscopici del fluido:

Libero cammino medio tra due collisioni (λ) Velocità media di agitazione termica delle particelle ( $v_{THERM}$ )

#### • Parametri macroscopici del fluido:

Dimensione del sistema (L)

➡Velocità del fluido (v<sub>FLUID</sub>)

➡ Pressione (p)

 $\Rightarrow$  Densità del fluido ( $\rho$ )

⇒ Velocità del suono nel fluido:  $c_s = \sqrt{dp/d\rho}$ 

rightarrowViscosità: η~  $\lambda$ V<sub>THERM</sub>

# Fluidodinamica in collisioni di ioni

#### • Dopo la collisione si crea un gas denso di particelle

⇒ Dimensioni dell'ordine della regione di overlap dei nuclei

- Il sistema è fortemente interagente: il libero cammino medio λ è piccolo rispetto alle dimensioni L del sistema → raggiunge l'equilibrio termodinamico velocemente
- A un certo istante  $\tau_{equ}$  il sistema raggiunge l'equilibrio termodinamico

Si può usare la fluidodinamica per un liquido ideale

- Il fluido si espande, la densità diminuisce e quindi aumenta il libero cammino medio  $\lambda$  e aumenta la dimensione del sistema
- A un certo istante  $\tau_{fo}$  il libero cammino medio  $\lambda$  diventa dello stesso ordine di grandezza della dimensione del sistema

→ Non si può più assumere il liquido ideale

Questo istante viene chiamato Freeze-out termico (o cinetico) ed è caratterizzato dalla temperatura di freeze-out T<sub>fo</sub>

### Equazioni della fluidodinamica

- Le equazioni della fluidodinamica sono le leggi di conservazione dell'energia e della quantità di moto
- In caso di fluido in moto con velocità relativistiche, le equazioni di conservazione del momento e dell'energia/massa si scrivono in forma tensoriale come:

$$\partial_{\mu}T^{\mu\nu} = 0$$
 con  $T^{\mu\nu} = (\varepsilon + p)u^{\mu}u^{\nu} - pg^{\mu\nu}$ 

 A queste si aggiunge una equazione di continuità che rappresenta la conservazione del numero barionico:

$$\partial_{\mu}j^{\mu}_{B} = 0$$
 con  $j^{\mu} = n_{B}u^{\mu}$ 

 Sono quindi 5 equazioni differenziali alle derivate parziali con 6 incognite (ε, p, n<sub>B</sub> e le 3 componenti della velocità)

### Equazione di stato

- Per chiudere il sistema delle 5 equazioni di conservazione di energia, impulso e numero barionico serve un'ulteriore relazione
- Si deve quindi usare un'equazione di stato per la materia nucleare che metta in relazione la pressione e la densità di energia del sistema



- Esempio: equazione di stato dal bag model con transizione di fase del prim'ordine
  - Per T<T<sub>c</sub>: equazione di stato di un gas di adroni non interagenti
  - Per T>T<sub>c</sub>: equazione di stato di un gas di quark e gluoni non interagenti a massa nulla con bag-pressure B (ε=3p+4B)

### Condizioni iniziali

- Nelle prime fasi dell'evoluzione della fireball il sistema non è in equilibrio, quindi non si può applicare la fluidodinamica
- Bisogna quindi iniziare l'evoluzione fluidodinamica a un tempo  $\tau_{equ}$  a partire dallo stato del sistema (= distribuzioni spaziali di energia e entropia) al tempo  $\tau_{equ}$
- La modellizzazione delle condizioni iniziali può essere fatta con:

Codici Monte Carlo che descrivono le cascate partoniche (UrQMD, AMPT)

Ricavare la densità di energia e di entropia dalle densità di partecipanti e collisioni calcolate con il modello di Glauber





#### Freeze-out termico

- L'evoluzione idrodinamica termina quando il libero cammino medio delle particelle diventa dell'ordine delle dimensioni del sistema e quindi il sistema non è in grado di mantenersi in equilibrio termodinamico
- Il termine dell'evoluzione idrodinamica viene normalmente descritto secondo le prescrizioni di Cooper-Frye
  - Si postula una transizione immediata di tutte le particelle all'interno di un elemento di fluido da una situazione di equilibrio termico (libero cammino medio = zero) a una di espansione libera (libero cammino medio →∞)
  - La densità di energia al momento del freeze-out è uno dei parametri dei modelli idrodinamici che viene ottimizzato per riprodurre i dati sperimentali

# Fluidodinamica e radial flow (1)





- I parametri liberi della fluidodinamica sono fissati per riprodurre gli spettri in p<sub>T</sub> di pioni e antiprotoni per collisioni centrali
- Una volta che i parametri sono stati fissati per pioni e protoni in collisioni centrali, le distribuzioni in p<sub>T</sub> alle altre centralità e per gli altri adroni sono calcolati senza inserire altri parametri.

### Fluidodinamica e radial flow (2)

|                            | SPS | RHIC 1 | RHIC 2 |
|----------------------------|-----|--------|--------|
| $\sqrt{s_{ m NN}}$ (GeV)   | 17  | 130    | 200    |
| $s_{ m eq}~({ m fm}^{-3})$ | 43  | 95     | 110    |
| $T_{\rm eq}$ (MeV)         | 257 | 340    | 360    |
| $	au_{ m eq}~({ m fm}/c)$  | 0.8 | 0.6    | 0.6    |

- I parametri inseriti nell'evoluzione fluidodinamica dipendono dall'energia della collisione
- Ad esempio per collisioni Au-Au a  $\sqrt{s}=130$  GeV

 $\begin{array}{l} \rightleftharpoons \tau_{equ} = 0.6 \text{ fm/c} \qquad \Rightarrow T_{equ} = 340 \text{ MeV} \qquad \Rightarrow \epsilon_{equ} = 25 \text{ GeV/fm}^3 \\ \blacksquare s_{equ} = 95 \text{ fm}^{-3} \\ \blacksquare \epsilon_{fo} = 0.075 \text{ GeV/fm}^3 \qquad \Rightarrow T_{fo} = 130 \text{ MeV} \end{array}$ 

- II tempo per equilibrare il sistema diminuisce al crescere di  $\sqrt{s}$ 

## Fluidodinamica e radial flow a LHC



- Predizione idrodinamica basata sull'estrapolazione dei parametri da RHIC
  - OK per pioni e kaoni, per i protoni non sono riprodotti nè la forma nè lo yield
- Idrodinamica per il QGP + cascata adronica (= modello microscopico) per le fasi successive all'adronizzazione ↔ OK per pioni e kaoni, per i protoni la froma dello spettro è riprodotta

46

correttamente

#### **Evoluzione fluidodinamica**



#### Altri tipi di moto collettivo

- In collisioni di ioni il parametro di impatto genera una direzione preferenziale nel piano trasverso
  - Il piano della reazione (reaction plane) è il piano definito dal parametro di impatto e la direzione del fascio



- L'anisotropic transverse flow è una correlazione tra l'angolo azimutale [=tan<sup>-1</sup> (p<sub>y</sub>/p<sub>x</sub>)] delle particelle prodotte e il parametro di impatto (cioè il reaction plane)
- Si genera un anisotropic flow se i momenti delle particelle nello stato finale dipendono non solo dalle condizioni fisiche locali nel loro punto di produzione, ma anche dalla geometria globale dell'evento
  - L'anisotropic flow è una segnatura non ambigua di un comportamento collettivo

# Piano della reazione

- L'anisotropic transverse flow è quindi una correlazione tra la direzione (= momento) delle particelle prodotte e il parametro di impatto della collisione
  - Il piano definito dal parametro di impatto e dalla direzione del fascio si chiama piano della reazione
  - ⇒L'angolo azimutale del vettore parametro di impatto nel piano trasverso si indica con  $\Psi_{\rm RP}$



- Correlazione tra le velocità delle particelle prodotte e il parametro di impatto
- In collisioni con b≠0 (non centrali) si crea una fireball con un'anisotropia geometrica
  - La regione di overlap ha una forma ellissoidale



- Dal punto di vista macroscopico:
  - I gradienti di pressione (e quindi le forze che spingono le particelle) nel piano trasverso sono anisotropi (= dipendenti da φ)
    - ✓ Il gradiente di pressione è maggiore nel piano x,z (lungo il parametro di impatto) che lungo y
  - La velocità del fluido dipende da φ
  - La distribuzione azimutale delle particelle rivelate sarà anisotropa

- Correlazione tra le velocità delle particelle prodotte e il parametro di impatto
- In collisioni con b≠0 (non centrali) si crea una fireball con un'anisotropia geometrica

⇒La regione di overlap ha una forma ellissoidale



#### Dal punto di vista microscopico:

Le interazioni tra le particelle prodotte (se sufficientemente forti) possono convertire questa anisotropia geometrica iniziale in un'anisotropia nella distribuzione dei momenti delle particelle che può essere misurata

- Si parte dalle distribuzioni azimutali delle particelle rispetto al piano della reazione ( $\phi$   $\Psi_{RP}$ )
- Si usa uno sviluppo in serie di Fourier :

$$\frac{dN}{d(\phi - \Psi_{RP})} = \frac{N_0}{2\pi} \left( 1 + 2\nu_1 \cos(\phi - \Psi_{RP}) + 2\nu_2 \cos(2(\phi - \Psi_{RP})) + \dots \right)$$

- ⇒I termini con i seni non sono presenti perché la distribuzione di particelle deve essere simmetrica (pari) rispetto a  $\Psi_{RP}$
- I coefficienti delle varie armoniche (v<sub>1</sub>, v<sub>2</sub>,...) descrivono le differenze rispetto a una distribuzione isotropa

Dalle proprietà delle serie di Fourier si ricava che:

 $v_n = \langle \cos[n(\phi - \Psi_{RP})] \rangle$ 

# **Coefficiente** v<sub>1</sub>: **Directed flow**

 $\frac{dN}{d(\phi - \Psi_{RP})} = \frac{N_0}{2\pi} \left( 1 + 2v_1 \cos(\phi - \Psi_{RP}) + 2v_2 \cos(2(\phi - \Psi_{RP})) + \dots \right)$ 

 $v_1 = \langle \cos(\phi - \Psi_{RP}) \rangle$ 

**Directed** flow



Se v₁≠0 c'è una differenza tra il numero di particelle dirette parallelamente (0°) e antiparallelamente (180°) al parametro di impatto
Il directed flow rappresenta quindi una direzione preferenziale di emissione delle particelle



particelle nel piano trasverso

Vista nel piano trasverso

55

# **Coefficiente** v<sub>2</sub>: Elliptic flow

 $\frac{dN}{d(\phi - \Psi_{RP})} = \frac{N_0}{2\pi} \left( 1 + 2\nu_1 \cos(\phi - \Psi_{RP}) + 2\nu_2 \cos(2(\phi - \Psi_{RP})) + \dots \right)$ 

Elliptic flow

$$v_2 = \langle \cos[2(\phi - \Psi_{RP})] \rangle$$



- Se v<sub>2</sub>≠0 c'è una differenza tra il numero di particelle dirette parallele (0° e 180°) e perpendicolari (90° e 270°) al parametro di impatto
- E' l'effetto che ci si aspetta dalla differenza tra i gradienti di pressione paralleli e ortogonali al parametro di impatto 56



# In plane vs. out of plane



# Armoniche superiori

$$\frac{dN}{d(\phi - \Psi_{RP})} = \frac{N_0}{2\pi} \left( 1 + 2\nu_1 \cos(\phi - \Psi_{RP}) + 2\nu_2 \cos(2(\phi - \Psi_{RP})) + \frac{1}{2\nu_1} \cos(\phi - \Psi_{RP}) \right)$$

#### Terza armonica: v<sub>3</sub>

Per collisioni di nuclei uguali deve essere v<sub>3</sub> = 0 (e così tutte le altre armoniche dispari) per ragioni di simmetria (salvo effetti dovuti a fluttuazioni della geometria iniziale)



#### • Quarta armonica: v<sub>4</sub>

⇒ Per grandi valori di v<sub>2</sub> deve essere ≠
 0 per riprodurre la geometria della regione di overlap.

$$\Rightarrow$$
 In caso di fluido ideale v<sub>4</sub>=0.5 v<sub>2</sub><sup>2</sup>



# Tipi di flow in collisioni nucleari

- Radial flow = flusso isotropo (i.e. indipendente dall'angolo azimutale  $\phi$ ) nel piano trasverso
  - Dovuto alla differenza di pressione tra l'interno e l'esterno della fireball
  - ⇒Unico tipo di moto collettivo per b=0
  - ⇒Osservabili sperimentali: p<sub>T</sub> (m<sub>T</sub>) spectra



- Anisotropic transverse flow = dipendenza della velocità di flusso dall'angolo azimutale φ, tipica di collisioni con b≠0
  - Dovuti ai gradienti di pressione che si generano in seguito all'anisotropia geometrica della fireball
  - Osservabili sperimentali: distribuzioni azimutali delle particelle rispetto al piano di reazione, coefficienti di Fourier v<sub>1</sub>, v<sub>2</sub>, ....



# Importanza dell'elliptic flow



Pressure driven hydrodynamic expansion

## Elliptic flow - caratteristiche (1)



 L'anisotropia geometrica che è all'origine dell'elliptic flow si attenua con l'evoluzione del sistema

Anche in caso di espansione libera (sistema non interagente) l'eccentricità della fireball diminuisce con l'aumentare della dimensione del sistema

- I gradienti di pressione che sono all'origine dell'elliptic flow sono più forti nei primi istanti dopo la collisione
- L'elliptic flow è quindi particolarmente sensibile all'equazione di stato (i.e. velocità del suono) del sistema nei primi istanti della collisione

# Elliptic flow - caratteristiche (2)



- L'anisotropia geometrica ( $\epsilon_{\chi}$  = deformazione ellittica della fireball) diminuisce con il tempo
- L'anisotropia dei momenti ( $\varepsilon_P$ , che è quella che si misura):
  - Si sviluppa velocemente nei primi istanti della collisione ( $\tau$  < 2-3 fm/c), quando il sistema è nello stato di QGP

#### ✓ Effetto dell'equazione di stato del QGP che ha alta velocità del suono ( $c_s^2 = dp/d\epsilon = 1/3$ ) -> "hard equation of state"

Rimane costante durante la transizione di fase (2 < τ < 5 fm/c) che nell'equazione di stato usata nei modelli fluidodinamici è del prim'ordine

#### ✓ Effetto del "softening" dell'equazione di stato durante la transizione di fase $(c_s = 0)$

 $\Rightarrow$ Aumenta ancora leggermente nella fase di gas adronico ( $\tau$  < 5 fm/c)

✓ In questa fase la velocità del suono è più bassa ( $c_s^2 \approx 0.15$ )

# Idrodinamica, equilibrio, viscosità

- L'idrodinamica assume che il fluido sia ovunque vicino all'equilibrio, ma è una teoria effettiva anche nei casi in cui ci sono piccoli gradienti nei campi di velocità e temperatura
  - → Nell'idrodinamica ideale (ordine zero) si ignorano i gradienti

✓ Plasma isotropico nel sistema di riferimento di riposo del plasma

- Nell'idrodinamica viscosa (prim'ordine): il rapporto tra viscosità e entropia (η/s) controlla quando rapidamente le ''sound waves'' o i gradienti presenti nelle condizioni iniziali sono dissipati in calore
- Confrontando i risultati dell'idrodinamica con le misure di anisotropic flow si possono quindi ottenere informazioni sulla viscosità del sistema (QGP e gas di adroni)

#### NOTA: la goccia di QGP prodotto in collisioni di ioni si espande rapidamente

- Anche se la viscosità è bassa, i gradienti dovuti all'espansione implicano che le correzioni viscose sono importanti
- Anche se l'idrodinamica fornisce una buona descrizione del sistema a partire da un tempo τ~0.5 fm/c, il tempo necessario al fluido per raggiungere il completo equilibrio termico è più lungo

# Elliptic flow: risultati sperimentali

# v<sub>2</sub> vs. centralità a RHIC (1)

L'elliptic flow che si osserva dipende da:

Eccentricità della regione di overlap

Diminuisce al crescere della centralità

• Quantità di interazioni subite dalle particelle

Aumenta al crescere della densità di particelle (e quindi della centralità)







- I valori di v<sub>2</sub> misurati sono ben descritti dalla fluidodinamica ideale (i.e. viscosità = 0) per collisioni centrali e semi-centrali usando i parametri estratti dagli spettri in p<sub>T</sub>
- I modelli (e.g. RQMD) basati su una cascata adronica non riproducono l'elliptic flow osservato, che quindi sembra provenire da una fase partonica (= deconfinata)





#### Interpretazione:

- In collisioni semi-centrali si ha una termalizzazione rapida (τ<sub>equ</sub>≈0.6–1 fm/c) e il sistema creato è un fluido (quasi) ideale
- Per collisioni più periferiche (fireball più piccola e meno interagente) la termalizzazione è incompleta e/o più lenta
- Da notare che il limite idrodinamico è quello di un fluido perfetto, l'effetto della viscosità è di ridurre l'elliptic flow

# Elliptic flow vs. $\sqrt{s}$

 In collisioni semi-centrali (20-30%) v<sub>2</sub> aumenta del 30% da RHIC a LHC

più di quanto previsto dai calcoli di idrodinamica ideale
 in accordo con i modelli che includono correzioni viscose





- A basso p<sub>T</sub> la fluidodinamica ideale riproduce i dati
- Ad alto  $p_{T}$  i dati si discostano dall'andamento previsto
  - $\Rightarrow$  Spiegazione naturale: le particelle ad alto p<sub>T</sub> sfuggono velocemente dalla fireball senza subire abbastanza re-scattering e termalizzare, quindi la fluidodinamica non è applicabile

#### Elliptic flow: da RHIC a LHC



 v<sub>2</sub> vs. p<sub>T</sub> non cambia entro le incertezze tra √s<sub>NN</sub>=200 GeV e 2.76 TeV

⇒L'aumento del 30% dell'elliptic flow integrato su p<sub>T</sub> è quindi dovuto al fatto che <p<sub>T</sub>> è più grande a LHC a causa del maggior radial flow

### v<sub>2</sub> per particelle identificate



- A basso p<sub>T</sub> (<2 GeV/c): gerarchia dei v<sub>2</sub> secondo la massa degli adroni -> dovuta all'interplay tra radial e elliptic flow
  - Il radial flow tende a spingere adroni di basso p<sub>T</sub> verso p<sub>T</sub> maggiori, "svuotando" la regione di basso p<sub>T</sub>
  - → Questo "svuotamento" è:
    - ✓ Maggiore in-plane (maggiori gradienti di pressione) che out-of-plane -> riduce v₂
    - ✓ Maggiore per particelle di massa maggiore -> mass ordering

 A più alto p<sub>T</sub> (>2.5 GeV/c) i valori di v<sub>2</sub> si raggruppano per mesoni vs. barioni, cioè secondo il numero di quark costituenti dell'adrone

 ⇒ Indicazione che l'origine del flow è a livello partonico
v<sub>2</sub> per particelle identificate



 La fluidodinamica è in grado di riprodurre anche la dipendenza di v<sub>2</sub> dalla massa della particella a basso p<sub>T</sub>



- Nelle collisioni di ioni a energie relativistiche si osserva la presenza di moti collettivi (radial e anisotropic flow)
  - L'evoluzione idrodinamica di un fluido (quasi) ideale riproduce le misure di radial ed elliptic flow usando un'equazione di stato con transizione di fase da QGP a gas di adroni
  - La fireball raggiunge rapidamente le condizioni per cui si può usare una descrizione idrodinamica
  - Il flow è uno dei "pezzi di puzzle" usati per affermare che in collisioni di ioni si forma uno "Strongly interacting QGP" (sQGP)
- La conversione dell'anisotropia geometrica iniziale in anisotropia dei momenti finali è particolarmente sensibile alla viscosità del fluido
  - $\Rightarrow$  II confronto dati-fluidodinamica favorisce valori bassi di  $\eta/s$
  - La viscosità è sicuramente "exceptionally low", ma una stima precisa del suo valore è affetta da incertezze perché a seconda delle condizioni iniziali (puro Glauber vs. modelli con saturazione di gluoni nello stato iniziale) si devono usare valori di viscosità diversi nell'idrodinamica per riprodurre i dati
  - Gli studi sulle armoniche di ordine superiore (v<sub>3</sub>, v<sub>4</sub>) e sulle fluttuazioni di v<sub>2</sub> evento per evento possono fornire informazioni utili per definire meglio le condizioni iniziali e la viscosità del fluido

## Esercizio: semplice calcolo del mass ordering

## "Mass ordering"

 Una semplice spiegazione per la presenza di una gerarchia in v<sub>2</sub> dipendente dalla massa della particella (mass ordering) si può derivare dalla distribuzione di Boltzmann usata per il modello della blast wave

$$\frac{dN}{p_T dp_T d\phi dy} \propto e^{-\frac{p^\mu u_\mu}{T}}$$

• Per particelle con  $p_L=0$  e  $p_T$  parallelo alla velocità del fluido:

$$p^{\mu}u_{\mu} = m_T u_0(\phi) - p_T u(\phi)$$

Dove nella velocità del fluido si è inserita una modulazione della velocità di espansione radiale dipendente dall'angolo azimutale
 Nel caso di modulazione ellittica della velocità di radial flow

$$u(\phi) = u + 2\alpha \cos(2\phi)$$

 $\Rightarrow$  in cui u è la velocità mediata su  $\varphi$ . Quindi:

 $u_0(\phi) = \sqrt{1 + u^2(\phi)} = \sqrt{1 + u^2 + 4\alpha u \cos(2\phi) + \ldots} \approx u_0 + 2\alpha\beta\cos(2\phi)$ 

"Mass ordering"

#### Sostituendo nella distribuzione di Boltzmann:

 $\frac{dN}{p_T dp_T d\phi dy} \propto e^{-\frac{p^{\mu} u_{\mu}}{T}} = e^{\frac{-m_T u_0(\phi) + p_T u(\phi)}{T}} = e^{\frac{1}{T}[-m_T (u_0 + 2\alpha\beta\cos 2\phi) + p_T (u + 2\alpha\cos 2\phi)]} =$ 

$$=e^{\frac{1}{T}[-m_{T}u_{0}+p_{T}u]}e^{\frac{1}{T}[2\alpha(p_{T}-\beta m_{T})\cos 2\phi]}=\frac{dN}{p_{T}dp_{T}dy}e^{\frac{1}{T}[2\alpha(p_{T}-\beta m_{T})\cos 2\phi]}$$

• La modulazione  $\alpha$  è piccola, quindi si può sviluppare in serie l'esponenziale:

$$\frac{dN}{p_T dp_T d\phi dy} \propto \left[1 + 2\frac{\alpha(p_T - \beta m_T)}{T} \cos 2\phi + \dots\right]$$

 $\Rightarrow$  E quindi:

$$v_2 = \frac{\alpha}{T} (p_T - \beta m_T)$$

 $\Rightarrow$  v<sub>2</sub> aumenta circa linearmente con p<sub>T</sub>  $\Rightarrow$  A parità di p<sub>T</sub>, m<sub>T</sub> aumenta e v<sub>2</sub> diminuisce al crescere della massa

### Appendice: equazioni di Eulero

## Equazioni della fluidodinamica

- Le equazioni della fluidodinamica sono le leggi di conservazione dell'energia e della quantità di moto
- Nel caso di collisioni di ioni andranno scritte per il caso di un fluido
  - In moto non stazionario (cioè la velocità in un punto non è costante nel tempo)
  - Compressibile (la velocità del fluido >> della velocità del suono nel fluido)
  - ⇒ Relativistico (la velocità collettiva è dell'ordine di 0.5c)
  - ➡Ideale, cioè non viscoso
    - Quest'ultima assunzione serve a semplificare il problema, ma ci sono da qualche anno modelli idrodinamici con viscosita'
- Un fluido di questo tipo è descritto dalle equazioni di Eulero e dalla legge di conservazione della massa che ricaveremo nel caso non relativistico

# Equazioni del moto di Eulero (1)

• Forza di pressione esercitata su un elemento di fluido  $\Delta V = \Delta x \Delta y \Delta z$ :

$$F_{x} = p_{x0}\Delta y\Delta z - (p_{x0} + \frac{dp}{dx}\Delta x)\Delta y\Delta z = -\frac{dp}{dx}\Delta V$$

$$F_{y} = p_{y0}\Delta x\Delta z - (p_{y0} + \frac{dp}{dy}\Delta y)\Delta x\Delta z = -\frac{dp}{dy}\Delta V$$

$$F_{z} = p_{z0}\Delta x\Delta y - (p_{z0} + \frac{dp}{dz}\Delta z)\Delta x\Delta y = -\frac{dp}{dz}\Delta V$$

• La forza di pressione per unità di volume sarà quindi:

$$f_p = -\nabla p$$

# Equazioni del moto di Eulero (2)

 Se le uniche altre forze cha agiscono sul fluido sono quelle gravitazionali, si può scrivere la legge di Newton F=ma come:



dove D/Dt rappresenta la derivata totale della velocità (che dipende da t, x, y e z) rispetto al tempo e vale:

$$\frac{D\vec{v}}{Dt} = \frac{\partial\vec{v}}{\partial t} + \frac{\partial\vec{v}}{\partial x}\frac{dx}{dt} + \frac{\partial\vec{v}}{\partial y}\frac{dy}{dt} + \frac{\partial\vec{v}}{\partial z}\frac{dz}{dt} =$$
$$= \frac{\partial\vec{v}}{\partial t} + v_x\frac{\partial\vec{v}}{\partial x} + v_y\frac{\partial\vec{v}}{\partial y} + v_z\frac{\partial\vec{v}}{\partial z} =$$
$$= \frac{\partial\vec{v}}{\partial t} + (\vec{v}\cdot\nabla)\vec{v}$$

# Equazioni del moto di Eulero (3)

Le equazioni di Eulero sono quindi:

$$\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla)\vec{v} = -\frac{1}{\rho}\nabla p + \vec{g}$$

Sono 3 equazioni non lineari alle derivate parziali che rappresentano la conservazione del momento

$$\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + g_x$$
$$\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial y} + g_y$$
$$\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial z} + g_z$$

- In caso di fluido stazionario e incompressibile le equazioni di Eulero si riducono a quella di Bernoulli
- In caso di fluido viscoso le equazioni sono quelle (più complicate) di Navier-Stokes

## Equazione di continuità

#### Conservazione della massa

La variazione nel tempo dt della massa del fluido all'interno di un volume V è:

$$\frac{dm}{dt} = \int \frac{d\rho}{dt} dV$$

Se non ci sono pozzi o sorgenti, questa deve essere uguale al flusso di massa che entra/esce dalla superficie esterna del volume V

$$\Phi_M = -\int \rho \vec{v} d\vec{S} = -\int \nabla \cdot (\rho \vec{v}) dV$$
teorema della divergenza

dove il segno – è dovuto al fatto che d**S** è diretto verso l'esterno e quindi se la velocità **v** è diretta verso l'esterno (flusso uscente) la massa nel volume V diminuisce (dm/dt negativo)

Quindi:

$$\frac{d\rho}{dt} + \nabla \cdot (\rho \vec{v}) = 0$$