Soppressione degli stati del charmonio

• Charmonio: stato legato cc

- I quark charm e anticharm legati hanno un moto di tipo non-relativistico (β~0.4)
 → problema non perturbativo
- Varie tecniche possibili per descrivere gli stati e le loro proprietà
- Lattice QCD, importante anche per gli studi vs T
- NRQCD: espansione in serie v/c, v²/c²....
- Cornell potential

$$V = \frac{a}{r} + br$$

Breve storia (per riscaldarsi...)

a.a. 20

- J/ ψ : unica particella con due nomi
- Scoperta simultanea a SPEAR(SLAC) e AGS(BNL)

Annichilazione e⁺e⁻ (SPEAR)

Proprietà fondamentali

- Gli stati del charmonio si dividono in due gruppi, a seconda che si trovino sopra o sotto la soglia di decadimento del canale DD
- Gli stati che NON possono decadere in charm aperto hanno larghezze piccolissime, in quanto:
 - i decadimenti di tipo adronico sono OZI-suppressed ----- ~ 70%
 - gli unici altri decadimenti possibili sono di tipo e.m. ------ ~ 30%
 - Si ha, ad esempio, $\Gamma_{J/\psi} = 88 \pm 5 \text{ keV}$

Esempio

• Fortunatamente (per gli sperimentali) alcuni dei decadimenti e.m. sono abbastanza facili da identificare, anche in reazioni dove si producono molte particelle (come nelle collisioni di ioni pesanti)

$$J/\psi \rightarrow \mu^+ \mu^-$$

B.R = 5.94 ± 0.06 %
 $J/\psi \rightarrow e^+ e^-$

La particella ψ

• Il processo osservato a SPEAR era

 $e^+ + e^- \rightarrow \psi(2S) \rightarrow J/\psi + \pi^+ + \pi^-$

seguito da $J/\psi \rightarrow e^+ + e^-$

...quindi la particella si è "battezzata" da sola.....

E a Brookhaven ? Ipotesi 1 J viene prima di K (mesone strano già ben noto) Ipotesi 2 Nome cinese di Ting \longrightarrow (T)

Produzione della J/ψ

- Nel decadimento, la componente adronica e e.m. sono dello stesso ordine di grandezza
- I processi di produzione di che tipo sono ? Potrebbero essere elettromagnetici (tipo DY)?

Produzione della J/ ψ (2)

- Altra possibilità: annichilazione qq mediata da gluoni
- La carica di colore di $\pi^+ e \pi^- e$ la stessa \rightarrow identica sezione d' urto
- Si dovrebbe allora ossevare una differenza sostanziale tra collisioni pp (l' antiprotone contiene antiquark di valenza) e pp
- La teoria prevede un fattore 5-10

 La produzione indotta da antiprotoni è maggiore, ma siamo ben lontani dal fattore 5-10

Produzione della J/ ψ (3)

- Produzione della J/ ψ attraverso la fusione di 2 gluoni ?
 - → Possibile, occorre produrre la coppia cc in uno stato di singoletto di colore

- Color-singlet model (CSM)
- Largamente usato fino a metà degli anni '90

Irrimediabilmente condannato dagli esperimenti al collider (CDF)

Produzione della J/ ψ (4)

- La produzione di J/ ψ è un processo dove sono presenti aspetti perturbativi e non-perturbativi
 - Da un lato $\alpha_s(m_c) \sim 0.25$ (relativamente piccolo, trattamento perturbativo ammesso)
 - Dall' altro, la dinamica dello stato legato è essenzialmente non perturbativa (v/c piccolo, adronizzazione può avvenire su tempi lunghi..)

Si ha
$$\sigma_{J/\psi} = \sum_{i,j} \int_0^1 dx_1 dx_2 f_{i/A}(x_1) f_{j/B}(x_2) \hat{\sigma}(ij \to J/\psi)$$

Si suppone di poter fattorizzare il contributo perturbativo e non perturbativo a $\sigma(ij \rightarrow J/\psi)$

$$\hat{\sigma}(ij \to J/\psi) = \sum_{n} C_{\overline{Q}Q[n]}^{ij} \langle O_n^{J/\psi} \rangle$$

coeff. perturbativi (pQCD)

elem. matrice non perturbativi calcolati in serie di v/c

Produzione della J/ ψ (4)

- Gli stati n possono essere singoletti o ottetti di colore, e corrispondere a vari stati si momento angolare della coppia cc
- I coefficienti $O_n^{J/\psi}$ sono fittati sui dati, ma sono universali, ovvero possono essere applicati a vari processi di produzione
 - Gli stati misurati sperimentalmente sono ovviamente solo singoletti di colore, quindi uno stato di ottetto deve neutralizzare il suo colore emettendo un gluone (soffice)
 - Per la J/ ψ avremo uno stato di singoletto $O_1^{J/\psi}({}^3S_1)$ e vari stati di ottetto di colore $O_8^{J/\psi}({}^3S_1), O_8^{J/\psi}({}^0S_1), O_8^{J/\psi}({}^3P_J)$ con $O_8^{J/\psi}({}^3P_J) = (2J+1)O_8^{J/\psi}({}^3P_0)$

ME	J/ψ	ψ'	Y(1 <i>S</i>)	$\Upsilon(2S)$	Y(3 <i>S</i>)
$\begin{array}{c} \langle \mathcal{O}_{1}^{H}({}^{3}S_{1}) \rangle \\ \langle \mathcal{O}_{8}^{H}({}^{3}S_{1}) \rangle \\ \Delta_{8}(H) \end{array}$	1.16	0.76	9.28	4.63	3.54
	6.6×10 ⁻³	4.6×10 ⁻³	5.9×10^{-3}	4.1×10^{-3}	3.5×10^{-3}
	Fitted	Fitted	5.0×10^{-2}	3.0×10^{-2}	2.3×10^{-2}

Produzione della J/ ψ (5)

- I valori degli elementi di matrice "fittati" su un tipo di processo descrivono con successo molti risultati sperimentali
- NRQCD ha comunque ancora problemi (esempio, polarizzazione J/ψ)

- **ENAE** a.a. 2007
- II modello discusso nelle slides precedenti (Non-Relativistic QCD, NRQCD, detto anche color octet model, COM) rappresenta il modello oggi più in voga per descrivere la produzione degli stati del charmonio

Stati legati in un QGP

$$V(r) = -\frac{\alpha}{r} + kr$$

Termine coulombiano, indotto dallo scambio di un gluone tra q e \overline{q}

Termine di confinamento, semplice parametrizzazione degli effetti non-perturbativi

L' Hamiltoniana del sistema può essere scritta come

$$H = \frac{\vec{p}^2}{2\mu} - \frac{\alpha}{r} + kr \qquad (\mu = m_c/2 \text{ massa ridotta})$$

• Buona descrizione dello spettro osservato degli stati del charmonio con α =0.52, k=0.926 GeV/fm, m_c=1.84 GeV

Stati legati in un QGP(2)

Supponiamo di "immergere" la coppia cc in un plasma di quark e gluoni
C'è un effetto sul potenziale V(r) dovuto alla presenza del QGP ?

- 2 effetti principali
- Il termine di "confinamento" (kr) svanisce
- La presenza di una elevata densità di colore "scherma" la parte coulombiana del potenziale

$$V(r) = -\frac{\alpha}{r} + kr$$
 $V(r) = -\frac{\alpha}{r}e^{-r/\lambda_D}$

Stati legati in un QGP(3)

- In un QGP il potenziale che lega il charmonio diventa di tipo Yukawa
- Compare una nuova quantità $\lambda_D \rightarrow$ lunghezza di schermatura di Debye
- Si usa spesso la quantità $m_D = 1 / \lambda_D$ (screening mass)
- λ_D è stata calcolata all' ordine più basso nell' ambito della QCD perturbativa (approssimazione!) ottenendo

$$\lambda_D(PQCD) = \frac{1}{\sqrt{\left(\frac{N_c}{3} + \frac{N_f}{6}\right)g^2T}}$$

- λ_D è legata alla massima distanza alla quale due cariche di colore possono formare uno stato legato in un QGP

decresce all' aumentare di T e della costante di accoppiamento $(g^2 = (\pi/3) \alpha)$

Debye screening

- L' effetto che stiamo discutendo è l' analogo di un effetto ben noto di schermatura dell' interazione elettromagnetica
- Ad esempio, in una soluzione acquosa la presenza di ioni liberi limita il range dell' interazione elettromagnetica tra cariche.
- Per una soluzione acquosa a temperatura ambiente la lunghezza di Debye è data da

$$\lambda_{D} = \frac{1}{\sqrt{4\pi l_{B} \sum_{i} Z_{i}^{2} \rho_{i}}}$$
 (I_B=0.7 nm)

- Per una soluzione di NaCI a concentrazione 1M, otteniamo Na+ e CI-
- Abbiamo ρ = 6.02 \times 10 20 cm $^{-3}$

 \rightarrow si ottiene $\lambda_D = 0.3$ nm

- Due cariche, poste a 1nm di distanza, sono completamente schermate!
- In biologia: superficie di proteine, membrane cellulari sono cariche
- → In una soluzione, le biomolecole interagiscono tra loro solo a pochi nm, al di là la schermatura di Debye blocca l' interazione di Coulomb

Stati legati in un QGP(4)

- Dalle considerazioni precedenti, si vede che, a causa del fenomeno di schermatura, in un QGP si può avere una dissociazione degli stati legati del charmonio (e anche del bottomonio)
- Cerchiamo di essere più quantitativi, ripartendo dall' hamiltoniana del sistema in caso di schermatura di colore

$$H = \frac{\vec{p}^2}{2\mu} - \frac{\alpha}{r} e^{-r/\lambda_D}$$

- Usando il principo di indeterminazione scriviamo $\langle \vec{p}^2 \rangle \approx 1/r^2$

L' energia del sistema cc sarà data da

$$E(r) = \frac{1}{2\mu r^2} - \frac{\alpha}{r} e^{-r/\lambda_D}$$

Stati legati in un QGP(5)

 Gli stati legati corrispondono a minimi di r, per cui uguagliando a zero la derivata di E(r) si ottiene la condizione

$$-\frac{1}{\mu r^3} + \frac{\alpha(1+r/\lambda_D)}{r^2}e^{-r/\lambda_D} = 0$$

Dalla quale

$$\frac{-1 + \alpha \mu r (1 + r/\lambda_D) e^{-r/\lambda_D}}{\mu r^3} = 0 \quad e \quad \frac{\alpha \mu r \lambda_D}{\lambda_D} (1 + r/\lambda_D) e^{-r/\lambda_D} = 1$$

che dà $x(1+x)e^{-x} = \frac{1}{\alpha\mu\lambda_D}$

dove
$$x=r/\lambda_D$$

Vediamo come è fatta la funzione x(1+x)e^{-x}.....

Stati legati in un QGP(6)

- - •Consideriamo un sistema cc in assenza di schermatura, ovvero assumiamo $\lambda_{\rm D} \rightarrow \infty$

- L' equazione che definisce lo stato legato diviene che dà $r_0 = 1/\alpha\mu$
 - Sostituendo $\alpha = 0.52$, $\mu = m_c/2 = 1840 \text{ MeV}/2$

Quanto vale λ_{D} a T = 200 MeV, per un QGP a 3 sapori ?

$$\lambda_D(PQCD) = \frac{1}{\sqrt{\left(\frac{N_c}{3} + \frac{N_f}{6}\right)g^2 T}} = \sqrt{\frac{2}{3g^2}} \frac{1}{T} = 0.36 \, fm$$

 $\frac{r_0}{1-\alpha + 1} > \lambda_D$ • Quindi è verificata la condizione

Lo stato cc NON può rimanere legato in un QGP a T= 200 MeV

$$\frac{1}{\mu r^3} - \frac{\alpha}{r^2} = 0$$

$$r_0 = 0.41 \, fm$$

$$CD) = \frac{1}{\sqrt{\left(\frac{N_c}{3} + \frac{N_f}{6}\right)g^2 T}} = \sqrt{\frac{2}{3g^2}\frac{1}{T}} = 0.36f$$

Soppressione della J/ψ (Matsui e Satz)

PHYS. LETT. 3, in press

BROOKHAVEN NATIONAL LABORATORY

June 1985

BNL-38344

J/ψ SUPPRESSION BY QUARK-GLUON PLASMA FORMATION

T. Matsui

Center for Theoretical Physics Laboratory for Nuclear Science Massachusetts Institute of Technology Cambridge, MA 02139, USA

and

H. Satz

Fakultät für Physik Universität Bielefeld, D-48 Bielefeld, F.R. Germany and Physics Department Brookhaven National Laboratory, Upton, NY 11973, USA

ABSTRACT

If high energy heavy ion collisions lead to the formation of a hot quarkgluon plasma, then colour screening prevents $c\bar{c}$ binding in the deconfined interior of the interaction region. To study this effect, we compare the temperature dependence of the screening radius, as obtained from lattice QCD, with the J/ψ radius calculated in charmonium models. The feasibility to detect this effect clearly in the dilepton mass spectrum is examined. We conclude that J/ψ suppression in nuclear collisions should provide an unambiguous signature of quark-gluon plasma formation. Articolo originale in cui la "soppressione" della J/ψ viene indicata come "segnatura" della formazione del QGP !

 Forse l' articolo più noto di tutta la fisica degli ioni pesanti ultrarelativistici

1005 citazioni ad oggi !

Phys.Lett. B178 (1986) 416

This manuscript has been authored under contract number DE-AC02-78CH00016 with the U.S. Department of Energy. Accordingly, the U.S. Government retains a non-exclusive, regulty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purpose.

Stati del charmonio (e bottomonio)

state	J/ψ	χ_c	ψ'	Υ	χ_b	Υ'	χ_b'	Υ″
mass [GeV]	3.10	3.53	3.68	9.46	9.99	10.02	10.26	10.36
$\Delta E \; [\text{GeV}]$	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
ΔM [GeV]	0.02	-0.03	0.03	0.06	-0.06	-0.06	-0.08	-0.07
r_0 [fm]	0.50	0.72	0.90	0.28	0.44	0.56	0.68	0.78

- Stati più legati hanno dimensioni più piccole
- La condizione r₀>r_D si otterrà a temperature diverse per le varie risonanze
- Possiamo cercare di identificare le risonanze che "scompaiono" e da lì dedurre la temperatura T ottenuta nella collisione

Risonanze e temperatura

• In altri termini,ogni risonanza ha una sua "soglia di dissociazione" tipica

- Per osservare questo fenomeno, è sufficiente misurare lo stato più legato
- Infatti le risonanze meno legate hanno un B.R. non nullo di decadimento (radiativo) verso risonanze più legate

Decadimenti

Scale factor/

$\chi_{c2}(1P)$ DECAY MODES

	Mode	Fraction (Γ_j/Γ)	Scale factor/ Confidence level
Γ1	hadrons	(97.85±0.13) %	
Γ2	virtual $\gamma \rightarrow hadrons$	(1.73±0.14)%	5=1.5
Γ3	light hadrons		
Γ4	e+ e-	$(7.35\pm0.18)\times10^{-1}$	-3
Γ ₅	$\mu^{+}\mu^{-}$	(7.3 ±0.8)×10 ⁻	-3
Γ ₆	$\tau^+\tau^-$	$(2.8 \pm 0.7) \times 10^{-1}$	-3
	Decays into J/	+(1S) and anything	
	$J/\psi(1S)$ anything	(56.1 ±0.9)%	>
Γ8	$J/\psi(15)$ neutrais	(23.0 ±0.4)%	
Γ9	$J/\psi(1S)\pi^{+}\pi^{-}$	(31.8 ±0.6) %	
Γ ₁₀	$J/\psi(1S)\pi^{0}\pi^{0}$	(16.46±0.35) %	
Γ ₁₁	$J/\psi(1S)\eta$	(3.09±0.08) %	
Γ ₁₂	$J/\psi(1S)\pi^{0}$	$(1.26\pm0.13) \times 10^{-1}$	-3 S=1.3

 Tenendo conto dei tassi di produzione misurati e dei B.R. di decadimento, vale la seguente relazione (approssimata)

$N_{J/\psi}^{meas}$	$=N_{J/\psi}$ +	$N_{J/\psi}^{\chi_c o J/\psi X}$	$+ N_{J/\psi}^{\psi' o J/\psi X}$
	60%	30%	10%

	Mode	Fraction $(\Gamma_{\tilde{I}}/\Gamma)$	Confidence level
	Ha	dronic decays	
Γ1	$2(\pi^{+}\pi^{-})$	(1.23±0.15) %	
Γ2	$\pi^{+}\pi^{-}K^{+}K^{-}$	(9.9 ±2.5)×	10 ⁻³ S=1.6
Γ3	$3(\pi^{+}\pi^{-})$	(8.6 ±1.8)×	10-3
Γ4	$\rho^0 \pi^+ \pi^-$	(7 ±4)×	10-3
Γ ₅	$K^{+}\overline{K}^{*}(892)^{0}\pi^{-}$ + c.c.	(4.8 ± 2.8)×	10-3
Γ6	$K^{*}(892)^{0}\overline{K}^{*}(892)^{0}$	(3.8 ±0.8)×	10^{-3}
Γ7	$\phi\phi$	(1.9 ±0.7)×	10-3
Γ8	ωw	(2.0 ±0.7)×	10-3
Гg	$\pi\pi$	(2.14±0.25)×	10^{-3}
Γ ₁₀	$\eta \eta$	< 1.2 ×	10 ⁻³ CL=90%
Γ11	$\pi^{+}\pi^{-}K_{S}^{0}K_{S}^{0}$	(2.6 ±0.6)×	10-3
Γ ₁₂	$K^{+}K^{-}K^{+}K^{-}$	(1.41±0.35)×	10-3
Γ ₁₃	$K^{+}K^{-}K_{c}^{0}K_{c}^{0}$		
Γ ₁₄	$\pi^+\pi^-p\overline{p}$	(1.32±0.34)×	10-3
Γ ₁₅	K^+K^-	(7.7 ±1.4)×	10-4
Γ ₁₆	K ⁰ ₅ K ⁰ ₅	(6.7 ±1.1)×	10-4
Γ ₁₇	K ^õ cK ^õ cp p	< 7.9 ×	10 ⁻⁴ CL=90%
Γ19	3 3 5 7	(6.6 ±0.5)×	10-5
Γ10	74	(2.7 ±1.3)×	10-4
F20	$\Lambda \overline{\Lambda} \pi^+ \pi^-$	< 3.5 ×	10 ⁻³ CL=90%
Γ21	$J/\psi(1S)\pi^{+}\pi^{-}\pi^{0}$	< 1.5 %	CL=90%
Γ22	$K_{c}^{0}K^{+}\pi^{-}+ c.c.$	< 1.0 ×	10 ⁻³ CL=90%
Γ ₂₃	<u>=</u> = <u>=</u> +	< 3.7 ×	10 ⁻⁴ CL=90%
	Ra	diative decays	
-	11.10.00	100.0.1.0.1.0.1.0.	

$\Gamma_{24} = \gamma J/\psi(1S)$	(20.2 ± 1.0) %
$\Gamma_{25} \gamma \gamma$	$(2.59\pm0.19)\times10^{-4}$

ψ(25) DECAY MODES

Primi risultati

- La J/ ψ viene soppressa (fattore 2!) da collisioni periferiche a centrali
- Problemi
 - Stiamo scegliendo un processo di riferimento corretto?
 - Esistono processi, NON legati al QGP, che possono sopprimere la J/ψ ?

Misure sperimentali

- Il metodo più seguito per la misura della J/ ψ in collisioni di ioni pesanti è lo studio del decadimento J/ $\psi \rightarrow \mu^+ \mu^-$
- Di quali elementi occorre tener conto nel progetto di un esperimento che misura coppie di muoni?
- Risoluzione in massa
 - \rightarrow Necessaria per separare risonanze vicine nello spettro di massa
- Accurata ricostruzione del vertice di interazione
 - → Necessaria per separare sorgenti "prompt" da decadimenti di mesoni a vita lunga
- Possibilità di prendere dati ad elevata luminosità
 - \rightarrow Necessaria per misurare processi rari (come la prod. di coppie di μ)
- Accettanza su ampie regioni dello spazio delle fasi
 → Certi fenomeni sono visibili solo in ristrette regioni di y e p_T
- Livello di fondo

 \rightarrow Essenziale per risonanze larghe o studio di processi non risonanti

- Usare un assorbitore adronico spesso per eliminare gli adroni
- Progettare un sistema di trigger, basato su rivelatori veloci, per selezionare eventi con muoni (1 su 10⁻⁴ in collisioni Pb-Pb all' SPS)
- Ricostruire le tracce dei muoni in uno spettrometro (campo magnetico+tracciamento)
- Correggere per lo scattering multiplo e le perdite di energia nell' assorbitore

•Estrapolare i muoni al vertice di produzione (bersaglio)

•La ricostruzione del vertice non è ottima ($\sigma_z \sim 10$ cm)

Cattiva risoluzione in massa ?

• Difficile rivelare la ψ' : gobba a destra della J/ψ

Come migliorare la risoluzione ?

Esperimento NA60 all' SPS

Risoluzione

- Lo scattering multiplo domina la risoluzione per μ di basso impulso
- La varianza θ_s della distribuzione angolare è proporzionale a 1/p

 Ad alto impulso la risoluzione è dominata dall' accuratezza del tracciamento (δp/p proportionale a p)

- La risoluzione in massa invariante per uno spettrometro a muoni ha due componenti Quella legata allo scattering multiplo esplode a bassa massa
- A $m_{\mu\mu} \sim 1$ GeV, il matching delle tracce permette un forte miglioramento della risoluzione in impulso
- A $m_{\mu\mu}$ ~ 3 GeV (J/ ψ) il contributo dello scattering multiplo è meno importante ma non ancora trascurabile

$$\theta_{\rm s} = \frac{21.2 \text{ MeV}}{\beta cp} z \sqrt{X_0}$$

$$\frac{\delta p}{p} = \sqrt{\frac{720}{N+5}} \frac{\varepsilon}{L^2} \frac{p}{0.3 \cdot B}$$

Altri vantaggi di un tracciatore di vertice

 Possibilità di selezionare il bersaglio nel quale è avvenuta l' interazione (in NA60: σ_z ~ 200 μm)

Spettro di massa invariante

 Un esperimento che studia lo spettro di massa delle coppie di leptoni (e⁺e⁻ o μ⁺μ⁻) è in grado si studiare molti processi fisici

NA60: spettro misurato

• I processi elencati nella figura precedente rappresentano il cosiddetto "segnale"

 Nella realtà esistono anche delle sorgenti di fondo, che vanno identificate e sottratte prima di poter effettuare una analisi di fisica

Esperimenti con dileptoni \rightarrow è importante il fondo combinatoriale

Fondo combinatoriale (1)

- Il fondo combinatoriale è dovuto a decadimenti (non correlati) di π e K
- Come renderlo minimo ? Occorre avere l' assorbitore adronico il più vicino possibile al punto in cui avviene la collisione (ma non troppo!)
- Tecniche di sottrazione
- Un esperimento che studia la produzione di coppie di muoni, registra eventi in cui si producono $\mu^+\mu^-$, ma anche $\mu^+\mu^+ e \mu^-\mu^-$ (like-sign)
- Gli eventi like-sign sono dovuti esclusivamente a processi di tipo combinatoriale
- Supponiamo che l' apparato abbia la medesima accettanza, a parità di variabili cinematiche, per μ⁺ e μ⁻ (A⁺⁺=A⁻⁻=A⁺⁻)
- Supponiamo inoltre di avere
 - N₊ (N₋) mesoni positivi (negativi) per evento
 - P(N₊) (P(N₋)) probabilità di produrre N₊(N₋) mesoni
 - P(N₊, N₋) probabilità di produrre N₊ mesoni positivi e N₋ mesoni negativi

(Supponiamo infine che non vi siano forti correlazioni tra la carica delle particelle che decadono in muoni (vero per eventi ad alta molteplicità))

Fondo combinatoriale (2)

• Con le ipotesi della trasparenza precedente si ha

$$N_{++} = \int A^{++} P(N^{+}) \frac{N^{+}(N^{+}-1)}{2} dN^{+} = \frac{A^{++}}{2} \left(\left\langle N^{+2} \right\rangle - \left\langle N^{+} \right\rangle \right)$$
$$N_{--} = \int A^{--} P(N^{-}) \frac{N^{-}(N^{-}-1)}{2} dN^{-} = \frac{A^{--}}{2} \left(\left\langle N^{-2} \right\rangle - \left\langle N^{-} \right\rangle \right)$$

$$N^{+-} = \int A^{+-} P(N^{+}, N^{-}) N^{+} N^{-} dN^{+} dN^{-} = \left\langle N^{+} \right\rangle \left\langle N^{-} \right\rangle A^{+-}$$

in quanto $P(N^+, N^-) = P(N^+)P(N^-)$ (assenza di correlazioni di carica)

Se la molteplicità dei mesoni è Poissoniana e dunque $\langle N \rangle = \langle N^2 \rangle - \langle N \rangle^2$

$$N^{+-} = 2\sqrt{N^{++}N^{--}} \frac{A^{+-}}{\sqrt{A^{++}A^{--}}} = 1 \text{ per accettanza simmetrica}$$

Fit allo spettro (esempio)

- Le varie componenti dello spettro di massa invariante vengono di solito estratte attraverso procedure di fit
- Esempio: regione $m_{\mu\mu} > 2$ GeV, collisioni In-In a NA60

- Passo 0
- Calcolo, via Monte-Carlo, la distr. di massa per i processi in gioco (DY, J/ψ , ψ' , open charm
- Passo 1
- Fisso normalizzazione DY in una zona dove è l'unico processo a contribuire
- Passo 2
- Fisso contributo open charm
- Passo 3
- Fisso contributo risonanze