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3CNRS, Laboratoire J. A. Dieudonné UMR 6621, Parc Valrose, 06108 Nice, France
(Received 19 November 2009; published 22 January 2010)

The complex evolution of turbulent mixing in Rayleigh-Taylor convection is studied in terms of eddy

diffusivity models for the mean temperature profile. It is found that a nonlinear model, derived within the

general framework of Prandtl mixing theory, reproduces accurately the evolution of turbulent profiles

obtained from numerical simulations. Our model allows us to give very precise predictions for the

turbulent heat flux and for the Nusselt number in the ultimate state regime of thermal convection.
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Turbulent thermal convection is one of the most impor-
tant manifestations of turbulence. It appears in many natu-
ral phenomena, from heat transport in stars to atmosphere
and oceanic mixing, and it also plays a fundamental role in
many technological applications [1].

This Letter is devoted to the study of turbulent convec-
tion in the Rayleigh-Taylor (RT) setup, a paradigmatic
configuration in which a heavy layer of fluid is placed on
the top of a light layer. Gravitational instability at the
interface of the two layers leads to a turbulent mixing
zone which grows in time at the expenses of available
potential energy [2]. Specific applications of RT convec-
tion range from cloud formation [3] to supernova explosion
[4,5] and solar corona heating [6]. Because of the absence
of boundaries, the phenomenology of RT turbulence is
simpler than other convective systems where the thermal
forcing is provided by walls, such as the Rayleigh-Benard
configuration.

Recent theoretical work [7], confirmed by numerical
simulations [5,8–13], predicts for RT turbulence at small
scales a turbulent cascade with Kolmogorov-Obukhov
scaling (Bolgiano scaling in two dimensions). Here we
concentrate on large scale features of RT turbulence. We
propose a simple closure scheme based on the general
framework of Prandtl mixing length theory and leading
to a nonlinear diffusion model for temperature concentra-
tion. Our closure reproduces with high accuracy the
spatial-temporal evolution of the mean temperature profile
and allows us to derive a prediction for the scaling law of
Nu versus Ra which fits perfectly data obtained from direct
numerical simulations.

The equation of motion for the incompressible velocity
field v (r � v ¼ 0) and temperature field T in the
Boussinesq approximation is

@tvþ v � rv ¼ �rpþ �r2v� �gT (1)

@tT þ v � rT ¼ �r2T (2)

where � is the thermal expansion coefficient, � the kine-

matic viscosity, � the thermal diffusivity, and g ¼
ð0; 0;�gÞ is the gravitational acceleration.
The initial condition (at t ¼ 0) is a layer of cooler

(heavier) fluid on the top of a hotter (lighter) layer at
rest, i.e., vðx; 0Þ ¼ 0 and Tðx; 0Þ ¼ �ð�0=2Þ sgnðzÞ where
�0 is the initial temperature jump which fixes the Atwood
number A ¼ ð1=2Þ��0 (T ¼ 0 is the reference mean tem-
perature). This configuration is unstable, and after the
linear instability phase, the system develops a turbulent
mixing zone which grows in time starting from the plane
z ¼ 0. An example of the turbulent temperature field ob-
tained from high-resolution direct numerical simulations
of (1) and (2) is shown in Fig. 1.

FIG. 1 (color online). Snapshot of a ðx; zÞ section of the
temperature field for Rayleigh-Taylor turbulence numerical
simulation. White (black) represents hot, light (cold, heavy)
fluid. Boussinesq equations (1) and (2) are integrated by a
standard fully dealiased pseudospectral code at resolution Nx �
Ny � Nz with Ny ¼ Nx and aspect ratio Lx=Lz ¼ Nx=Nz ¼ r

(here Nx ¼ 1024 and r ¼ 1). Other parameters are �g ¼ 0:5,
�0 ¼ 1 (Ag ¼ 0:25), Pr ¼ �=� ¼ 1, and � is chosen such that
kmax� � 1:2 in all runs at final time. Initial perturbation is
seeded by adding a 10% of white noise to the initial temperature
profile in a small layer around z ¼ 0.
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In the mixing layer turbulent kinetic energy E ¼
ð1=2Þhv2i is produced at the expense of potential energy
P ¼ ��ghzTi as the energy balance indicates,

� dP

dt
¼ �ghwTi ¼ dE

dt
þ "�; (3)

where "� ¼ �hð@�v�Þ2i is the viscous energy dissipation

and hi represents the integral over the physical domain.
Assuming that in the turbulent state all quantities in (3)
scale in the same way one can balance dv2

rms=dt ’
�g�0vrms (because temperature fluctuations are bounded
by the initial jump �0) and therefore one obtains the
temporal scaling of velocity fluctuations vrms ’ �g�0t ’
Agt, i.e., a forced motion with constant acceleration g.

The accelerated growth of the width of the mixing layer
is one of the standard diagnostics in the studies of RT
turbulence [8,14–16]. Several definitions for the width
have been proposed, based on either local or global prop-
erties of the mean temperature profile �Tðz; tÞ �
1=ðLxLyÞ

R
Tðx; tÞdxdy. The simplest measure hr is based

on the threshold value of z at which �Tðz; tÞ reaches a
fraction r of the maximum value, i.e., �Tð� hrðtÞ=2; tÞ ¼
�r�0=2 [8]. This local definition of h can be rather noisy
and therefore alternative definitions based on integral
quantities have been proposed [5,8,17]

hM �
Z Lz=2

�Lz=2
Mð �cÞdz (4)

where c ¼ ðTmax � TÞ=ðTmax � TminÞ ¼ 1=2� T=�0 is
the normalized dimensionless temperature (0 � c � 1)
and M is a mixing function which has support on the
mixing layer only, e.g., a logistic function MðcÞ ¼ 4cð1�
cÞ [10] or a tent functionMðcÞ ¼ 2cþ ð2� 4cÞ�ðc� 1=2Þ
[5]. Dimensionally, h is expected to grow with accelerated
law hðtÞ ¼ �Agt2 with the dimensionless coefficient �
which depends on the definition of h and apparently also
on the form of the initial perturbation of the interface
[16,18]. Recent studies [5,19] have shown that a more
robust and consistent determination of � can be obtained
if an initial time t0 � 0 is taken into account (physically
representing the offset at which the t2 law sets in) suggest-
ing the possibility of a universal value, independent of the
form of the initial perturbation.

The evolution equation for the normalized temperature
profile �cðz; tÞ is obtained by averaging (2) over the hori-
zontal directions (assumed periodic)

@t �cþ @zwc ¼ �@2z �c (5)

where w represent the vertical velocity. The thermal flux
term wc makes (5) not closed. Following a common ap-
proach in turbulence, we close this equation in terms of an
eddy diffusivity Kðz; tÞ so that (5) is rewritten as

@t �c ¼ @zKðz; tÞ@z �c: (6)

Molecular diffusivity �, included additively in Kðz; tÞ, can

be neglected for large scale properties at high Péclet num-
ber. The simplest approximation is to consider K indepen-
dent of z. For our problem, being a diffusion coefficient
(i.e., a velocity times a scale) the eddy diffusivity is ex-
pected to depend on t as KðtÞ ¼ b2ðAgÞ2t3 with b a free
dimensionless parameter. The self-similar solution to (6)
with a step initial condition �cðz; 0Þ ¼ �ðzÞ is

�cðz; tÞ ¼ 1

2

�
1þ erf

�
z

bAgt2

��
: (7)

The constant diffusivity solution (7) is a relatively good
approximation of the actual profile obtained from the
numerical simulations of the full set of equations (1) and
(2), as shown in Fig. 2. A closer inspection of the figure
reveals that the model profile (7) is smoother than the
actual profile at the edges of the mixing region (see inset
of Fig. 2). The physical origin of this discrepancy is that
turbulent mixing is not homogeneous within the mixing
layer. Indeed turbulent velocity fluctuations decrease at the
ends of the mixing region, and therefore a constant K
overestimates the diffusivity in these regions.
An improved model must therefore take into account a z

dependence of the diffusivity. Within the general frame-
work of mixing length theory by Prandtl [1,20], the eddy
diffusivity can be written as Kðz; tÞ ’ H2@zV where H
represents a length characteristic of mixing and V is the
typical velocity fluctuation. Because velocity is driven by
buoyancy at large scale, from Eq. (1) one can estimate that
after a time t the typical velocity is V / �gTt, and taking
H / hðtÞ one obtains for the eddy diffusivity Kðz; tÞ ¼
aðAgÞ3t5@z �c where a is again a dimensionless constant to
be determined empirically. We remark that a similar ap-

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2  0  0.2  0.4

c(
z)

z/Lz

0.95

1

0.15 0.2

0

5

10

0 10 20 30

z 1

t

FIG. 2 (color online). Normalized mean temperature profile
cðzÞ computed by averaging over horizontal planes the turbulent
temperature field of Fig. 1. Blue dotted line is the prediction of
the linear diffusion model (7). Black continuous line is the fit
with the nonlinear model (10). Lower inset: Enlargement of the
temperature profile at the edge of the mixing layer. Upper
inset: Evolution of z1 obtained by fitting the temperature profile
with (10) at different times and over four different realizations.
The line represents the fit z1 ¼ �Agðtþ t0Þ2 which gives � ’
0:025 and t0 ’ 3:3.
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proach, based on gradient dependent diffusivity, has been
recently used for successfully modeling mixing in stratified
flows [21]. Inserting the above expression in (6) one ob-
tains a nonlinear diffusive model for the mean temperature
profile

@t �c ¼ aðAgÞ3t5@zð@z �cÞ2: (8)

Observe that the nonlinearity of (8) reflects the fact that
temperature fluctuations are not passive in this problem as
they drive velocity fluctuations in (1).

Introducing the concentration derivative ’ðz; tÞ ¼
3=ðaðAgÞ3Þ@z �cðz; tÞ and a new time variable t0 ¼ t6,
Eq. (8) is rewritten in a more standard form

@t0’ ¼ @zð’n@z’Þ (9)

with n ¼ 1. Equation (9) represents a class of nonlinear
diffusion equations with concentration dependent diffusiv-
ity well studied in different fields such as thermal waves in
plasma radiation [22] and diffusion problems in porous
media where for our case n ¼ 1 Eq. (9) is also known with
the name of Boussinesq equation [23]. The value of n
governs the behavior of the gradient when ’ ! 0 which
is finite for the present case. The self-similar solution (for
general n and dimensionality) is known [24] and gives for
our case

�cðz; tÞ ¼ 1

4

z

z1

�
3�

�
z

z1

�
2
�
þ 1

2
jzj � z1

�cðz; tÞ ¼ 0 z <�z1

�cðz; tÞ ¼ 1 z > z1;

(10)

where z1ðtÞ ¼ �Agt2 with � ¼ ð3a=2Þ1=3.
Having the analytical expression (10) for the mean

concentration, the different definitions of the width of the
mixing layer are all expressed in terms of z1 and differ by a
factor only (e.g., h1 ¼ 2z1 and hM ¼ ð3=4Þz1 for the tent
function [5]). Figure 2 shows that the polynomial function
(10) fits very well the mean concentration profile obtained
from numerical simulations. Runs at different resolutions
[and viscosity, the only parameter in (1) and (2) when Pr ¼
1] give analogous results. By fitting the numerical profiles
at different times, one obtains the evolution of z1 displayed
in the inset of Fig. 2 which is consistent with the quadratic
law z1 ¼ �Agðtþ t0Þ2 (t0 is the reference time as dis-
cussed above). The value obtained in this way for the
coefficient is � ¼ 0:025� 0:002, which for the profile
hM gives � ¼ ð3=4Þ� ’ 0:019 in agreement with previous
numerical results [5,10].

The nonlinear diffusion model can be extended from
geometrical quantities to study the evolution of dynamical
properties of turbulent convection. In particular, in the
limit of small thermal diffusivity, from (5) and (8) one
has an expression for the turbulent heat flux in terms of the
mean temperature profile wT ¼ aðAgÞ3t5ð@zTÞ2=�0.

Figure 3 shows that the numerically measured profile of
the heat flux is indeed quite close to the model prediction, a
justification a posteriori of the proposed nonlinear closure
scheme. Using the definition in (3) the loss of potential
energy in kinetic energy (and dissipation) is written as
�dP=dt ¼ ð4=5Þ�2ðAgÞ3t3 which shows that � is a mea-
sure of the efficiency of conversion of available potential
energy in the turbulent flow.
The relation between the heat flux and the profile ge-

ometry can be reformulated in terms of dimensionless
quantities. Indeed, integrating over the width of the mixing
layer it gives a relation between the Nusselt number Nu ¼
hwTi=ð��0Þ (the ratio of convective to conductive heat
transfer) and the Rayleigh number Ra ¼ Agh3=ð��Þ (the
ratio of the buoyancy forces to diffusivities). Using the
expression (10) and for the length h ¼ h1 ¼ 2z1, one
obtains the temporal evolution laws for the two quantities
as Ra ¼ 8�3ðAgÞ4t6=ð��Þ, Nu ¼ 2�2ðAgÞ2t3=ð5�Þ, and
therefore the relation

Nu ¼ 1

5
ffiffiffi
2

p �1=2 Pr1=2 Ra1=2: (11)

Equation (11) represents the well-known Kraichnan pre-
diction for the ‘‘ultimate state of thermal convection’’
[25,26], which is a regime of turbulent convection expected
to hold when the contribution of thermal and kinetic
boundary layers becomes negligible. Because of the ab-
sence of boundaries, RT turbulence is a natural candidate
for the appearance of this regime which has indeed been
observed recently in numerical simulations both in two and
three dimensions [11,12,27]. Figure 4 shows that the pre-
diction (11) with � ¼ 0:025 fits well the numerical data
obtained from a set of simulations at different resolutions.
The fact that Nu 	 1 is an a posteriori confirmation of the
negligible contribution of thermal diffusivity.
It is interesting to observe that the above result for Nu

satisfies a general bound which can be easily obtained
starting from (5). Neglecting thermal diffusivity and as-
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FIG. 3 (color online). Heat flux profile wT obtained at the
same time of Fig. 2. Black line represents the prediction of the
nonlinear diffusion model as discussed in the text.
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suming a self-similar evolution of the profile �cðz; tÞ ¼
fðz=z1ðtÞÞ with the symmetry condition fð�zÞ ¼
1� fðzÞ, integrating (5) over the z domain
½�Lz=2; Lz=2
 twice, one obtains

Z Lz=2

�Lz=2
dzwc ¼ 2 _z1

z1

�
2
Z Lz=2

0
dzz �cðz; tÞ � L2

z

4

�
: (12)

Using the fact that for z > 0 �cðz; tÞ> 1=2 and assuming
that the flow is still unmixed, �cðz; tÞ ¼ 1 for z > z1, we get
a bound

Nu ¼ � 1

�

Z Lz=2

�Lz=2
dzwc � 1

�
z1 _z1: (13)

If we now further assume the accelerated growth of the
mixing layer, z1ðtÞ ¼ �Agt2, we end with a bound on the
growth of the Nusselt number

Nu � 2

�
�2ðAgÞ2t3; (14)

which is indeed satisfied by our model. The physical
interpretation of this bound is transparent: the growth of
the heat flux follows the dimensional t3 law with a coeffi-
cient which depends on the shape of the mean temperature
profile. Maximum growth (14) is achieved when cðz; tÞ ¼
1=2 for �z1 � z � z1 which means a perfect mixing
within the mixing layer. This would correspond to a coef-

ficient ð�=2Þ1=2 in (11).
In this Letter we have introduced a nonlinear diffusion

model with a gradient dependent eddy diffusivity which
reproduces accurately the large scale phenomenology of

Rayleigh-Taylor turbulence obtained from high-resolution
numerical simulations. The model contains a single free
parameter, a measure of the turbulence production effi-
ciency, which is directly related to the rate of accelerated
growth of the mixing layer. The proposed closure scheme
represents an important step for a phenomenological de-
scription of RT turbulence as it connects the evolution of
the Nusselt number to the growth of the mixing layer, a
global geometrical quantity which can be easily obtained
in experiments.
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FIG. 4 (color online). Nusselt number Nu ¼ hwTi=ð��0Þ ver-
sus Rayleigh number Ra ¼ Agh3=ð��Þ from three different sets
of simulations at resolutions 256� 256� 1024 (squares), 512�
512� 2048 (circles), and 1024� 1024� 1024 (triangles) at
Pr ¼ 1. Kinematic viscosities for the three runs are, respectively,
� ¼ 6� 10�4, � ¼ 3� 10�4, and � ¼ 1� 10�4. The line is the
prediction (11) with � ¼ 0:025.
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