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A flux loop mechanism in two-dimensional stratified turbulence
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1Dipartimento di Fisica Generale and INFN, Università di Torino - via P.Giuria 1, 10125 Torino, Italy, EU
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Abstract – We discuss the phenomenology of energy transfer in two-dimensional, weakly stably
stratified turbulence. Kinetic energy, mechanically injected at small scales, is transferred by
turbulence towards large scales. This inverse cascade proceeds up to the Ozmidov scale, where
buoyancy forces become effective. Kinetic energy is converted into potential energy, which is
transferred back towards small scales via a turbulent cascade of density fluctuations. The resulting
“flux loop” is a novel mechanism which produces a non-trivial stationary state in two-dimensional
turbulence in the absence of a large-scale dissipation.
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Introduction. – Stably stratified flows are common
in many instances ranging from geophysical flows to
astrophysical applications (for a review see, e.g., [1,2]).
From a fundamental point of view, the consequences
of stable stratification on turbulence and its effect on
the energy cascade in three-dimensional flows have been
deeply investigated by means of numerical simulations
(see, e.g., [3–6]). In particular it has been found that
stratification can induce a reduction of dimensionality
which generates an energy transfer toward large-scale
structures with a mechanism which is further enhanced
by the presence of rotation (see, e.g., [7,8]).
In this letter we study the effects of stratification on the

inverse cascade of two-dimensional turbulence. In partic-
ular, we consider a two-dimensional flow stably stratified
in the vertical direction and we address the phenomenol-
ogy originated by the interplay between hydrodynamic
and buoyancy forces. This choice is motivated by experi-
ments recently carried out on stratified soap films [9–11]
which call for a deep investigation of physical mechanisms
acting in this context. Previous numerical studies of two-
dimensional vertically stratified flows have mostly focused
on regimes which share common features with the three-
dimensional case, such as the strongly stratified regime [12]
or the development of instabilities [13]. Here we are inter-
ested in the effects of stable stratification on the fate of
the inverse energy cascade, a process which is peculiar of
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two-dimensional turbulence. We recall that another inter-
esting regime arises in the presence of unstable stratifica-
tion which induces turbulent motion with Bolgiano scaling
for velocity and temperature fluctuations [14,15].
We consider a two-dimensional fluid stably stratified in

the vertical direction by a mean gradient in the density
field ρ̄(y) = ρ0− γy in the gravitational field g= (0,−g).
Within the Boussinesq approximation, the density field
can be equivalently thought as a temperature field, since
temperature and density are related via the thermal
expansion coefficient β. Introducing the Brunt-Väisälä
frequency N = (γg/ρ0)

1/2, the Boussinesq equations for
the incompressible velocity field u= (u1, u2) and density
fluctuations φ= 1γ (ρ− ρ̄) read

∂tu+u ·∇u=−∇p+ νΔu−N
2φê2+f , (1)

∂tφ+u ·∇φ= κΔφ+u2, (2)

where ν and κ represent molecular viscosity and diffusiv-
ity, respectively, and f represents an external mechanical
force.
In the inviscid, unforced limit (1), (2) conserve the total

energy (kinetic plus potential),

E =EK +EP =
1

2
〈u2〉+

1

2
N2〈φ2〉. (3)

In the presence of forcing and dissipations, the energy
input is εI = 〈v ·f〉 which, together with viscous and
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diffusive dissipations, gives the energy balance dEdt = εI −
εν − εκ.
In the limit N → 0, eq. (1) reduces to usual two-

dimensional Navier-Stokes equations coupled with the
transport equation for the passive scalar field φ. In this
case (1) has two inviscid conserved quantities: kinetic
energy EK and enstrophy Z = (1/2)〈(∇×u)

2〉 and the
turbulent flow displays the Batchelor-Kraichnan phenom-
enology with a direct cascade of enstrophy and an inverse
cascade of energy to large scales [16–18]. The scalar field φ
is forced at large scales by the last term in (2) and devel-
ops a direct cascade transported by the incompressible
velocity field.
When N > 0 the situation is in principle very differ-

ent as the coupled system (1), (2) has the single inviscid
conserved quantity (3) and the usual arguments support-
ing an inverse energy cascade cannot be a priori applied.
Nonetheless, the coupling between potential and kinetic
energy is not effective at all scales. The buoyancy force
N2φ balances the inertial force in (1) at the Ozmidov (or
Bolgiano) scale LO. At scales much smaller than LO the
buoyancy term in (1) is negligible with respect to the other
terms and scalar fluctuations can be considered effectively
passive [19].
In this letter we focus on the case of weakly stratified

flows, in which the Ozmidov scale is smaller than the
external scale of the system (the scale of the box) Lbox
and larger than the forcing scale ℓf , i.e. ℓf <LO <Lbox, a
regime in which we expect the following scenario. Kinetic
energy is injected, by definition, at scale ℓf where buoy-
ancy forces are negligible, and therefore transferred toward
larger scales by an inverse cascade à la Kraichnan. When
the cascade reaches the Ozmidov scale LO kinetic energy
is converted in potential energy (density fluctuations) by
the coupling terms in (1), (2). Density fluctuations are
then transported passively toward small scales by a direct
cascade and finally dissipated by diffusivity. Therefore, we
conjecture that the system (1), (2) can reach a statistical
stationary state even in the absence of a large-scale dissi-
pation mechanism thanks to the “flux loop” mechanism
described above (and shown in fig. 3) which converts the
inverse flux of kinetic energy in the direct flux of potential
energy.
The above argument can be made more quantitative

using dimensional analysis. In the range of scales ℓf ≪ ℓ≪
LO we assume to have an inverse cascade of kinetic energy
with constant flux ε= εI − εν ≃ δℓu

3/ℓ and therefore with
Kolmogorov scaling for velocity increments,

δℓu≃ ε
1/3ℓ1/3. (4)

At the Ozmidov scale, kinetic energy flux is converted into
potential energy which generates a direct cascade with
flux εφ ≃ (δℓu/ℓ)δℓφ

2. If the conversion is complete, i.e.
if ε=N2εφ, one has for the density fluctuations

δℓφ≃N
−1ε1/3ℓ1/3. (5)

The Ozmidov scale is determined by balancing inertial and
buoyancy terms in (1). Using (4) and (5) one obtains

LO ≃N
−3/2ε1/2. (6)

The inverse energy cascade is therefore halted at the
scale LO with a kinetic energy EK ≃ (δLOu)

2 ≃ ε/N . This
stationary state is reached with a characteristic time given
by the inverse of the Brunt-Väisälä frequency. Indeed,
when the integral scale L(t) of turbulent fluctuations is
still smaller than LO, the input of density fluctuations
is given by εφ ≃ δLuδLφ. Using (4) and (5) this gives
εφ ≃N

−1ε2/3L2/3 ≃N−1EK . From the energy balance,
assuming that εκ =N

2εφ (direct cascade) and that total
energy is dominated by the kinetic component so that
εφ ≃N

−1E, we have

dE

dt
= ε−NE (7)

which gives

E(t) =
ε

N
(1− e−Nt). (8)

The above arguments assume that LO≫ ℓf and there-

fore they are valid for N ≪ ε1/3ℓ
−2/3
f . For larger values

of the Brunt-Väisälä frequency, stratification prevents the
formation of the turbulent inverse cascade and energy
injected into the system is immediately converted into
potential energy. This regime of strong stratification has
been investigated in [12], and displays a different phenom-
enology characterized by the transfer of energy toward
vertical shear modes. Moreover, energy conversion is
possible only if LO �Lbox and therefore the condition

N � ε1/3L
−2/3
box is necessary to reach a stationary state

without accumulation of energy at the largest scale.
Of course, the effectiveness of the flux loop to stop

the inverse cascade at LO and to produce a stationary
state cannot be guaranteed a priori, as it depends on
the detailed coupling between backward kinetic energy
flux and forward potential energy flux. Therefore, one
has to make use of laboratory experiments or numerical
simulations in order to validate the theoretical scenario.
In this letter we report the results of a set of direct

numerical simulations of eqs. (1), (2) on a square
domain of size Lbox = 2π with periodic boundary condi-
tions for different values of N . The simulations have been
performed with a pseudospectral code, with 2/3-dealiasing
rule, at resolution 20482. The flow is sustained by a
Gaussian forcing f = (∂yϕ,−∂xϕ) with correlation func-
tion 〈ϕ(x, t), ϕ(x′, t′)〉=Φδ(t− t′) exp(−(|x−x′|/ℓf )

2).
Parameters of the simulations are reported in the caption
of fig. 1 where we show a snapshot of the density fluc-
tuation field φ obtained in our simulations. In spite of
the stratification in the vertical direction, the density
fluctuations are almost isotropic. Also the turbulent flow
does not show any significant anisotropy at scales within
the inertial range. The ratio between the rms velocities
in the vertical and horizontal direction measured in our
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Fig. 1: (Colour on-line) Snapshot of the density fluctuation
field obtained in numerical simulation with parameters ν = 1×
10−5, κ= 4× 10−5, ℓf = π/128, εI = 3.8 · 10

−3, and N2 = 1/4.

simulations varies in the range 0.95–0.97, decreasing
monotonically as the stratification is increased. These
results are in striking contrast with the strong anisotropy
of the density and velocity fields observed in the regime
of strong stratification, i.e. when L0 < ℓf , both in two-
and three-dimensional flows [3–6,12]. Indeed, the lack
of anisotropy in the 2D weakly stratified case is in
agreement with the results reported in [12], and gives a
first indication that the upscale energy transfer is arrested
at the Ozmidov scale, thus preventing the formation
of large anisotropic structures. We have verified that a
similar behavior appears also in numerical simulations of
two-dimensional Navier-Stokes equation (without strati-
fication) in the presence of an anisotropic friction term
(i.e. active only on the vertical velocity). It is worth
mentioning that a similar phenomenology has been
observed in the case of the stratified two-dimensional
Kolmogorov flow [13].
The results of our simulations indicates that the flux

loop mechanism depicted above is effective to stop the
inverse energy cascade at the Ozmidov scale and allows
to reach a steady state even in the absence of large-scale
dissipation. As it is shown in fig. 2 (panels (a) and (b)), in
the stratified cases both the kinetic and potential energy
attain constant values as the system evolves starting from
the u= 0, φ= 0 initial condition. This situation differs
from the test case without stratification (N2 = 0) in which
EK grows linearly in time, with the growth rate prescribed
by the energy balance dEK

dt = εI − εν . Consistently, we
observe that in the stratified cases the energy growth
rate εI − εν − εκ (shown in fig. 2, panel (c)) decreases
exponentially, with a decay rate which is proportional to
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Fig. 2: Temporal evolution of kinetic energy EK (panel (a))
and potential energy EP (panel (b)) and energy balance (panel
(c)) for various N2. The inset of panel (c) shows the rate of
exponential decay of energy growth rate as a function of N .
The line represent the linear best fit.

N , as predicted by (8). The ratio between EP and EK
measured in our simulations is an increasing function of
N and varies in the range 0.11–0.19, therefore EP ≪EK
as assumed in the derivation of (8).
The kinetic and potential energy spectra measured in

the statistically steady state (reported in fig. 3) have
a maximum close to the Ozmidov scale LO, where the
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Fig. 3: Kinetic and potential energy spectra for various N2.
The arrows indicate the “flux loop”.

inverse cascade of EK is stopped. More precisely, the
maximum of the kinetic energy spectrum is attained at
a wave number slightly larger (about a factor 2) than that
of the potential energy spectrum. At high wave numbers,
k≫L−1O , the spectra display an inertial range close to
Kolmogorov-Obukhov scaling EK,P ∼ k

−5/3, in agreement
with the hypothesis that the buoyancy effects become
almost negligible at scales ℓ≪LO. However, a weak
subdominant effect of the buoyancy force, which pumps
the direct cascade of density fluctuation in distributed
way, can be detected in the slope of the potential energy
spectrum, which is slightly flatter than Obukhov scaling.
At small wave numbers k≪L−1O the spectra of kinetic
and potential energy have the same amplitude, and are
characterized by a scaling EK,P ∼ k

2.
In fig. 4 we show the collapse of the maximum of the

kinetic, potential and exchange energy spectra, the latter
being defined as EX(k) =N/2

∫
|q|=k

d2q[u2(q)φ(−q)+

c.c.], for various stratification, according to the dimen-
sional prediction EK,P,X(kLO)≃LOε/N . We note that
the dimensional scaling is less accurate for EP (k) than
EK(k). As we will discuss, this is probably due to the
contamination of the dissipative range. The exchange
energy spectra have a maximum close to k∼L−1O , and
display a power-law behavior for k≪L−1O and k≫L−1O ,
showing that the exchange between kinetic and potential
energy occurs at all scales, and is maximum at the
Ozmidov scale.
The flux loop mechanism which allows for the formation

of a stationary state is understood in terms of kinetic and
potential energy fluxes. From (1), (2) we can write

d

dt

∫ ∞
k

EK(q) dq=ΠK(k)+ΠX(k)−Dν(k)+F (k),

d

dt

∫ ∞
k

EP (q) dq=ΠP (k)−ΠX(k)−Dκ(k),

(9)
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Fig. 4: Kinetic, potential and exchange energy spectra for
various N2 rescaled at the Ozmidov scale LO. The exchange
energy spectra EX(k) are multiplied by a factor 10

−1 for
plotting purposes.
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Fig. 5: Fluxes of kinetic energy ΠK(k) (solid line), poten-
tial energy ΠP (k) (dash-dotted line), and exchange integrals
±ΠX(k) (dashed lines) normalized with the energy input rate.
Here N2 = 1/4. Inset: same picture for a simulation with hyper-
viscosity and narrow-banded forcing.

where ΠK(k) and ΠP (k) are the kinetic and potential
energy fluxes, ΠX(k) =N

2/2
∫
|q|�k

d2q[u2(q)φ(−q)+ c.c.]

is the exchange integral, Dν(k) and Dκ(k) are the dissi-
pative contributions and F (k) is the contribution by the
forcing. The behavior of the ΠK(k), ΠP (k) and ΠX(k)
terms is shown in fig. 5. The negative flux of kinetic energy
vanishes at wave numbers smaller than L−1O , where the
conversion from kinetic to potential energy takes place and
the exchange integral ΠX(k) is different from zero. This is
then transferred toward small scales via a direct cascade
with positive flux.
Let us notice that in our simulation with standard

dissipation, i.e. Newtonian viscosity and diffusivity, the
dissipative effects are not negligible at wave numbers
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Fig. 6: PDFs of longitudinal velocity increments δru (left panel)
and scalar increments δrφ (right panel) at scales r/Lbox = 1/32
(solid line), r/Lbox = 1/128 (dashed line) and r/Lbox = 1/256
(dotted line). Here N2 = 1/2. The dash-dotted line represents
a standard Gaussian.

corresponding to the turbulent-cascade range. Such conta-
mination is clearly visible in the fluxes which do not
display a clear scale-independent plateau. Further, the
positive peak of the flux ΠP does not balance exactly the
negative peak of the flux ΠK , because a part of energy is
removed by dissipation at any scales along the turbulent
cascade. As a consequence, the actual value of the flux of
potential energy is smaller than the asymptotic value ε,
and depends on N . This also explains the slight deviation
observed in the collapse of the potential energy spectra.
Such spurious effects are expected to disappear in the limit
of vanishing dissipation. To check this we have performed
a test simulation with narrow-banded forcing and hyper-
dissipation, which allows to confine the dissipative effects
at high wave numbers. In this case the fluxes of EK and
EP perfectly balance each other (see inset of fig. 5).
It is interesting to note that this corresponds to a

state in which the net flux of the inviscid invariant
E =EP +EK is zero at all scales ℓ� ℓf . The occurrence
of such zero-flux state is highly non-trivial, since it results
from the cancellations of two cascade processes which
have substantially different properties. In particular, the
probability distribution functions (PDFs) of longitudinal
velocity increments δru, computed at scales r within the
inertial range, are self-similar and almost Gaussian (see
left panel of fig. 6), showing that the inverse energy
cascade of EK is not intermittent, as it is observed in the
absence of stratification [18]. On the contrary, the PDFs of
scalar increments δrφ (shown in the right panel of fig. 6)
reveal that the direct cascade of potential energy EP is
characterized by the presence of small-scale intermittency,
similar to those observed in the case of a passive scalar
field. Therefore, the zero-flux state for the total energy
E is originated by the coexistence of a non-intermittent
cascade of EK and an intermittent cascade of EP which
proceed in opposite directions.

It is also worth noting that the conversion of kinetic
energy into potential energy is not confined in a narrow
range of scales close to the Ozmidov scale. On the contrary,
it takes place in a broad range of scales (more than
one decades), as is shown both by the power-law tails
of the exchange energy spectrum EX(k) (see fig. 4) and
by the slow convergence of the exchange integral to the
asymptotic value ΠX(k)→ ε= εI − εν for kLO≪ 1. Such
convergence, which is required to obtain a steady state,
may not be completely achieved if the stratification is
reduced so much that the Ozmidov scale LO gets close
to the scale of the box Lbox. In this case, one may argue
that the excess of kinetic energy which is not completely
converted into potential energy could accumulate at the
scale LO, leading to the formation of a condensate state
at wave number L−1O . This scenario is consistent with the
results reported in [12], which have shown the possibility
to find unsteady states characterized by the presence of
strong vortices at the scale ℓ0 in the weakly stratified
case.
In conclusion, in this letter we have discussed a simple

mechanism, based on a flux loop process taking place in
wave number space, which is responsible for the formation
of non-trivial stationary states in stably stratified two-
dimensional turbulence. The existence of such states has
been confirmed by the results of our numerical simulations
performed within the framework of the Boussinesq approx-
imation. The mechanism depicted here is consistent with
previous reports of the arrest of the inverse energy cascade
caused by stratification [13], and does not exclude a priori
the possibility to observe unsteady condensed states popu-
lated by strong vortical structures [12]. The joint efforts
of numerical studies and laboratories experiments with
soap films could help to achieve a better understanding
of the conditions which could lead to the emergence of
these condensed states and their influences on the upscale
energy transfer.
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